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ABSTRACT
Artificial intelligence (AI) assistants for clinical decision
making show increasing promise in medicine. However,
medical assessments can be contentious, leading to expert
disagreement. This raises the question of how AI assis-
tants should be designed to handle the classification of
ambiguous cases. Our study compared two AI assistants
that provide classification labels for medical time series
data along with quantitative uncertainty estimates: conven-
tional vs. ambiguity-aware. We simulated our ambiguity-
aware AI based on real-world expert discussions to high-
light cases likely to lead to expert disagreement, and to
present arguments for conflicting classification choices. Our
results demonstrate that ambiguity-aware AI can alter expert
workflows by significantly increasing the proportion of con-
tentious cases reviewed. We also found that the relevance of
AI-provided arguments (selected from guidelines either ran-
domly or by experts) affected experts’ accuracy at revising
AI-suggested labels. Our work contributes a novel perspec-
tive on the design of AI for contentious clinical assessments.
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CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI);

INTRODUCTION
AI systems show increasing promise for numerous clinical ap-
plications. Recent advances in deep learning have spawned
AI systems with expert-level performance in several domains
of medical data classification (e.g., [43, 44, 57]). However,
contentious patient cases leading to expert disagreement are
prevalent in medicine [32]. Given the gravity of correct clini-
cal assessments, an important question in the design of AI for
medical data analysis is how the system should communicate
uncertainty about the classification of ambiguous cases.
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State-of-the-art AI systems are capable of providing quantita-
tive uncertainty estimates (e.g., 70% confident that a patient
case is abnormal). These estimates are typically derived from
posterior probability distributions over the possible classifica-
tion labels. However, prior work has shown that these es-
timates do not always reliably predict expert disagreement
[42]. Furthermore, numeric representations of uncertainty
alone may not be sufficient for human experts to make sense
of the underlying reasons behind the AI’s uncertainty.

Prior work in explainable AI (XAI) has established the impor-
tance of providing reasons for AI-suggested labels to foster
model transparency and user trust [1, 41, 62]. Building on
this body of work, we argue that explanations for label ambi-
guity can be leveraged by AI assistants to support medical rea-
soning. We detail a within-subject study with twelve expert
participants who interacted with both a conventional and an
ambiguity-aware AI assistant, reviewing a total of 4,514 AI-
suggested labels, out of which 22% were contentious. Both
assistants used quantitative representations to communicate
uncertainty, but our ambiguity-aware AI also highlighted con-
tentious cases and explained why they were ambiguous by
providing human-interpretable arguments for the conflicting
labels. While this feature was simulated using cases and ar-
guments selected from real-world expert discussions, partici-
pants were unaware of its simulated nature. Our findings sug-
gest that explaining ambiguity can benefit AI-assisted medi-
cal reasoning. Our main contributions are:

1. We present a novel approach for communicating ambigu-
ity in AI-assisted medical reasoning, and provide evidence
that ambiguity-aware AI can alter experts’ workflows by
effectively re-directing their attention and review activity
to contentious cases.

2. We demonstrate that while explaining ambiguity can con-
tribute to experts’ labeling accuracy, its impact heavily de-
pends on the relevance of the arguments provided (selected
from guidelines either randomly or by experts). Specifi-
cally, if the arguments are not sufficiently relevant, experts’
accuracy can suffer to the point below that of random guess-
ing (i.e., less than 50% accurate).

3. We provide design considerations for communicating un-
certainty in AI-assisted medical reasoning, laying a foun-
dation for future implementations of AI systems better ca-
pable of conveying information about contentious cases.



In the following sections, we outline related work on the is-
sue of ambiguity and expert disagreement in medicine, ap-
proaches for handling ambiguity in AI systems, clinical de-
cision support technology, and the relationship between ex-
plainability and trust in AI systems. We then introduce the
design of our AI assistants, followed by our research ques-
tions, hypotheses and methods. Finally, we detail our quanti-
tative and qualitative findings, and conclude with a discussion
of design considerations.

RELATED WORK

Ambiguity & Expert Disagreement in Medicine
Expert disagreement in medical data analysis has been
deemed a “full-fledged clinical problem” [42]. There are var-
ious reasons for inter-rater disagreement in data classification
tasks. Experts may disagree about a classification decision
due to ambiguous problem definitions [2, 11, 23, 34], ambi-
guity inherent in the data itself [49], or the existence of more
than one correct answer [15, 45].

Prior work in medical decision making describes that med-
ical experts are susceptible to biases in their reasoning; for
instance, “confirmation bias” can lead a medical expert to
look only for evidence that is in line with their pre-existing
hypothesis [6]. As sub-optimal decision-making in medicine
can have major consequences, it is crucial to combat any
reasoning biases medical experts may have. Our simulated
ambiguity-aware AI aims to mitigate this bias by putting forth
arguments for conflicting medical assessments, encouraging
perspective-taking for alternate lines of reasoning.

Related literature suggests that communicating uncertainty
can impact cognition and trust, and potentially influence ex-
perts’ decision-making behaviours [60]. That said, there is a
body of work showing that people have a general aversion
towards ambiguity [30, 59]. For example, a study by Re-
delmeier and Shafir suggested that the uncertainty between
two medical assessments led some doctors to avoid making
a decision altogether [45]. Work done in psychology ac-
knowledges ambiguity-tolerance as a personality variable [7,
26]. Medical education research advocates that given the
inevitable nature of uncertainty in contemporary medicine,
medical experts must acquire a certain level of tolerance to
it [33].

Handling Ambiguity in AI Systems
Prior systems have generally taken one of three approaches to
the problem of ambiguity in AI-based data classification:

Eliminating Ambiguity. Traditional machine learning classifi-
cation methods eliminate class diversity using automatic pro-
cedures like majority vote [28], or expectation maximization
[38]. These systems tend to view ambiguity as a proxy for
noise to be reduced or eliminated in the data. [10, 63].

Aggregating Multiple Outputs. Other systems retain disagree-
ment labels for the purpose of training multiple models (e.g.,
one for each human labeler [22]); these systems typically pro-
duce multiple AI predictions which are aggregated into a sin-
gle label before being presented to the end user.

Label Distribution Learning. A more ambiguity-centric ap-
proach to data classification is label distribution learning
(LDL) [20], where machines are trained to predict not just
one label for a given case, but a distribution of possible clas-
sification labels [13, 40]. Standard LDL models will assign
uncertainty estimates to their classification outputs, providing
degrees of plausibility for each possible label.

The question of how systems should communicate or visu-
ally represent uncertainty to end users has received ample at-
tention in the human-computer interaction (HCI) community
[56]. Approaches include visualizing uncertainty as extrin-
sic annotation (e.g., confidence intervals), abstract, continu-
ous outcomes (e.g, probability density plots), or hypothetical,
discrete outcomes (e.g., natural frequencies or icon arrays)
[29]. Kay et. al [29] suggest that communicating uncertainty
through discrete outcomes can improve decision making on
the part of end users.

Prior work has found that collecting explanations around am-
biguous cases during data labeling workflows can be lever-
aged towards more fine-grained and flexible post-hoc data
classification [12]. In the context of medical data analysis,
Schaekermann et al. [50] showed that discussion metadata
produced by medical specialists can be re-used for the train-
ing of medical generalists to better calibrate their grading ap-
proach for difficult cases. Galdran et al. [19] developed a
system for vessel classification from retinal images, with the
ability to classify uncertain cases and provide direct uncer-
tainty estimates for its labels while achieving state-of-the-art
classification performance.

We take inspiration from Galdran’s work by simulating an
ambiguity-aware AI assistant for medical data analysis, an
LDL system that provides human-interpretable rationales for
all plausible classification labels. While our AI assistant is
simulated in the sense that it does not predict, but merely
displays human-annotated data, our work contributes novel
insights about how such an ambiguity-aware system affects
expert perception and behaviour.

Clinical Decision Support
Clinical decision support (CDS) is broadly defined as the pro-
vision of intelligent assistance to clinicians, medical staff, and
patients [37]. CDS can include low-level functions like com-
puterized alerts and reminders for providers and patients, or
high-level functions like patient diagnosis [14]. Norman et al.
[36] describe a dual process of diagnostic reasoning, where
physicians engage in (1) a non-analytic or unconscious pro-
cess of hypothesis generation, and/or (2) a conscious, ana-
lytic process of hypothesis testing. The latter is an extensive
computational process, and has motivated efforts to develop
AI-based CDS systems for diagnostic support.

In such support systems, a physician cross-checks the algo-
rithmic output against their internal knowledge, but takes re-
sponsibility for the final diagnostic decision. Our work takes
a similar approach of augmenting, instead of automating, the
job of physicians [21].



Figure 1. Interface for conventional and ambiguity-aware AI assistants in medical data analysis.

Barriers to the Adoption of AI-Based CDS Systems
Explainability. ML-based AI systems are typically opaque
with respect to their internal functions [35]. In fields where AI
is tasked with important decisions, it is imperative that auto-
mated decision making be interpretable, especially if the AI is
known to be imperfect [8, 31]. The field of XAI [61] emerged
as a response to this problem of transparency beginning in the
1970s and 1980s with the deployment of expert systems with
explanation capabilities—most notably for medical decisions
[1]. Explanations have been found to promote transparency
in machine learning algorithms and make users more aware
of how a system works [41]. Recent approaches in XAI, e.g.,
Ehsan et al. [18], demonstrate that AI systems can learn to
generate human-like natural language explanations for their
decisions. Mittelstaedt et al. [35] argue that there is a mecha-
nistic link between explanation and justification in human dis-
course, and that machine explanations should emulate human
explanations. Our simulated AI assistant instantiates these de-
sign principles, by providing human-interpretable rationales
for its outputs.

Trust. A lack of trust is arguably the most significant barrier
to adoption of AI-based systems. A CDS system can bias a
physician to choose the wrong course of action against their
own clinical judgement [17]. Human experts may also fail to
trust a reliable system. It is crucial that an appropriate level
of trust in automation be established to balance over-reliance
and under-reliance. Cai et al. [8] demonstrated a link between
explainability and trust by showing that pathologists trusted
a CDS tool for cancer diagnosis more if they could tweak
its internal representation of image similarity using domain-
specific concepts (e.g., number of fused glands).

Addressing the problem of trust becomes more complicated
in the context of uncertainty. Psychological uncertainty is an
aversive state [60], and thus information must be communi-
cated effectively to hedge against its negative effects. There
appears to be a volatile relationship between uncertainty and

trust. On the one hand, trust can be undermined by failing to
communicate uncertainty; on the other hand, admitting uncer-
tainty can also hinder trust [60]. Thus, it is crucial that ma-
chines strike the right balance between communicating and
withholding uncertainty information.

Studies on how communicating uncertainty affects trust are
limited and have produced mixed results. While there is some
evidence that trust can be fostered through explained uncer-
tainty [29], more research is needed. In a recent review of the
matter, van der Bles [60] acknowledged that uncertainty does
not always produce negative emotional effects. Indeed, in the
healthcare domain, Schneider et al. [56] developed a system
for communicating uncertainty in fertility prognosis that in-
creased users’ understanding of uncertainty without causing
them to have a negative view of the system.

In this work, we study how the workflows and perception of
medical experts is affected by an AI assistant capable of iden-
tifying and explaining ambiguous cases.

AMBIGUITY-AWARE AI ASSISTANCE
In this study, we explore how human-AI collaboration is af-
fected by an AI system’s ability to not only flag if specific
edge cases are on the classification boundary between two or
more categories, but also explain why a given case may be
ambiguous. Specifically, we compare a simulated AI system
that provides experts with arguments for conflicting classifi-
cation choices for a contentious case to a conventional AI as-
sistant that only provides numeric uncertainty estimates. Our
ambiguity-aware AI system uses a Wizard of Oz approach.
That is, justifications for conflicting classification labels were
hand-authored by human experts using a round-based discus-
sion procedure reported in prior work [49]. To compare the
ambiguity-aware AI assistant to a conventional AI assistant,
we led participants to believe that the justifications presented
to them were generated by an AI while, in fact, they were
manually selected by human experts.



Figure 1 illustrates how the two AI assistants—conventional
AI vs ambiguity-aware AI—were integrated into an existing
expert interface for classification of medical time series data.
Both AIs suggested classification labels based on a state-of-
the-art deep learning algorithm for sleep stage classification
[57], which has an average accuracy of 87% (when judged
against consensus labels from an expert panel). Both AI
assistants provided a sequence overview of all suggested la-
bels (hypnogram), in which each label corresponded to a 30-
second segment in the timeline of a multi-hour patient record-
ing. Experts could open a case by selecting the corresponding
time window in the overview, or by navigating through the
recording chronologically.

The key difference between the two AI assistants was in how
they communicated uncertainty to expert end users. Typical
output from machine learning algorithms includes not only
the predicted classification label, but also a likelihood distri-
bution over all possible classification choices. Both of our AI
assistants were designed to communicate this type of quanti-
tative uncertainty estimate in two ways (Figure 1, blue labels
3 and 4): (1) in the timeline overview, quantitative uncertainty
was visualized by mapping the confidence level (in percent-
age) for each possible classification label to a transparency
value used to display the label option in the timeline—low
confidence classification labels were more transparent, and
high confidence classification labels were more opaque; (2)
in the case detail view, quantitative uncertainty was displayed
in a tabular format, listing all possible classification choices
ordered from most to least likely along with their percentage
confidence levels.

While our conventional AI employed this baseline represen-
tation of uncertainty, our ambiguity-aware AI also commu-
nicated qualitative uncertainty based on arguments gathered
from real-world expert discussions (Figure 1, orange labels
5 and 6). Specifically, the timeline overview was augmented
with an additional layer highlighting contentious cases that
were likely to spur expert disagreement. Note that these sug-
gestions did not dictate the order in which cases were pre-
sented to experts for review: experts were still free to de-
cide how to navigate the recording timeline and what cases
to review in which order. In addition, the case detail view
for contentious cases was extended with an ambiguity expla-
nation, listing human-interpretable arguments for conflicting
classification choices. These arguments corresponded to dis-
crete scoring rules from the official guidelines for sleep stage
classification, and were based on data from real-world expert
discussions as described above.

RESEARCH QUESTIONS AND HYPOTHESES
Our work addresses two primary research questions about the
impact of ambiguity-aware AI on the behaviour (Q1) and per-
ception (Q2) of medical experts.

Q1: How does ambiguity-aware AI affect medical assess-
ments?

Expert time is a limited and expensive resource in clinical set-
tings and should therefore be allocated efficiently. We take
the stance that while medical experts should make their clin-

ical assessments with care, AI assistants can help prioritize
which cases require their attention the most. Our ambiguity-
aware AI is designed to redirect experts’ attention towards
cases likely to be contentious, and to provide arguments ex-
plaining the underlying classification ambiguity.

Our projection is that ambiguity explanations can inform clin-
ical judgement and thus increase experts’ classification accu-
racy without reducing the number of cases reviewed. Specif-
ically, we envision that the relevance of ambiguity explana-
tions is crucial for successfully informing expert judgement.
We hypothesize that:

[H1a] The proportion of contentious cases reviewed by ex-
perts will be higher with an ambiguity-aware AI.

[H1b] Expert efficiency in terms of the overall number of
cases reviewed will not suffer with an ambiguity-aware AI.

[H1c] Expert accuracy in terms of the overall portion of
cases reviewed and labeled correctly will be higher with an
ambiguity-aware AI.

[H1d] The accuracy of classification labels experts as-
signed to contentious cases will depend on the relevance
of the provided ambiguity explanations.

Q2: How is ambiguity-aware AI perceived by medical ex-
perts?

HCI research has established that poor user perception can be
a barrier to adoption of technology regardless of performance.
It is therefore important to investigate expert perception, be-
yond the primary outcome of reliability in AI-assisted clinical
assessments. We hypothesize that:

[H2a] Experts will have a preference for an ambiguity-
aware AI.

[H2b] Experts will consider an ambiguity-aware AI more
trustworthy.

[H2c] Highlighting and explaining contentious cases will
not increase experts’ cognitive load.

[H2d] Experts with higher ambiguity tolerance (as a per-
sonality trait) will have a stronger preference for the
ambiguity-aware AI.

METHODS
Here we describe the details of our controlled experiment in-
cluding the task, data set, study procedure, and statistical anal-
ysis. In our study, we simulate a scenario in which a medical
AI assistant first analyzes a patient case to suggest classifica-
tion labels of a certain kind. A trained medical expert then
reviews and corrects as many AI-suggested classifications as
possible within a given time window. This setting represents
a future scenario where (imperfect) AI systems are deployed
in time-sensitive clinical workflows while requiring oversight
from human experts.

Task
We conducted our study in the field of biomedical time-series
classification, an expert domain with typically high rates of



inter-rater disagreement. In particular, we compared our con-
ventional and ambiguity-aware AIs in the context of assist-
ing trained medical professionals in the task of sleep stage
classification, i.e., analyzing a patient’s sleep pattern based
on medical time series data (polysomnograms) recorded in a
sleep laboratory. A typical polysomnogram covers a whole
night of sleep (i.e., six to eight hours).

Sleep technologists are responsible for physically recording
sleep electroencephalograms (EEGs) by directly interacting
with patients. They also annotate these recordings for physi-
cians who then interpret and convey diagnoses to patients.
Overnight sleep EEGs are widely used in the diagnosis of
neurodegenerative and sleep disorders. The classification task
used in our work is a key step in this process.

The task of sleep stage classification involves mapping fixed-
length (30-second) segments of a polysomnogram to one of
five sleep stages: Wake, Rapid Eye Movement (REM) sleep
or one of three non-REM sleep stages (NREM 1, NREM
2, NREM 3). Figure 1 shows the expert classification in-
terface used in our study. The resulting sequence of sleep
stages, called a hypnogram, serves as evidence for the diag-
nosis of various neurological diseases and sleep-related dis-
orders. Sleep technologists apply rules from official medical
guidelines to classify time series segments into sleep stages
based on visually inspecting the waveform patterns.

Sleep stage classification lends itself as a task for our study on
AI assistance for contentious clinical assessments. Not only
is it a time-consuming and tedious procedure; it also relies on
lengthy and complex classification guidelines likely to spur
expert disagreement. In fact, prior work has established that
two sleep technologists have about a 17.4% chance of dis-
agreeing on the correct classification of the same waveform
segment [46].

Data
We selected two separate patient records (i.e, polysomno-
graphic sleep studies) with similar characteristics (Table 1) to
examine the two AI assistants under comparable conditions
while avoiding learning effects on the side of experts.

Patient A Patient B
Pathology Dementia Dementia
Sex Female Male
Age Group 70-74 years 75-79 years

Recording Duration 6h 52 min 30 sec 6h 18 min 30 sec
# Cases Total 825 757
% Contentious Cases Total 18% 18%
% Contentious Cases out of all Correct AI Suggestions 12% 11%
% Contentious Cases out of all Incorrect AI Suggestions 48% 51%

AI Accuracy Overall 84% 83%
AI Accuracy on Contentious Cases 55% 51%

Table 1. Characteristics of patient records used by the AI assistants.

Note that patient records where selected such that the AI ac-
curacy measured against just the contentious cases was close
to 50% for both patients, meaning that correction by human
experts was only required for about half of those cases. In
addition to counter-balancing the order in which conventional
and ambiguity-aware AI were presented to experts, the assign-
ment of AI assistant to patient record was also fully counter-

balanced. A separate third patient record was randomly se-
lected for a practice phase preceding the main task.

Adjudication data. We source the data required to simulate
our ambiguity-aware AI (i.e., which cases have high expert
disagreement, and what are the arguments for different classi-
fication labels) from a previous study [49] on the use of group-
based adjudication discussions in medical data analysis. This
prior work introduced a round-based procedure to adjudicate
clinical classification disagreements among groups of experts
using a highly structured argument format. In particular, ar-
guments were collected in the form of discrete classification
rules taken from the official medical guidelines (e.g., In pa-
tients who generate alpha rhythm, score stage N1 if the alpha
rhythm is extenuated and replaced by low-amplitude, mixed
frequency activity for more than half of the epoch).

This data set was used to simulate output for our ambiguity-
aware AI: cases that had caused expert disagreement and pro-
duced conflicting arguments in this data set were highlighted
as contentious cases by our ambiguity-aware AI. Arguments
put forward during the real-world adjudication process were
presented for these cases to explain the ambiguity around con-
flicting classification labels. For Q1, we sought to examine
the impact of argument relevance on clinical decision making
for contentious cases (H1d). To this end, we added noise to
ambiguity explanations by replacing a random subset (20%)
of arguments with scoring rules randomly selected from the
same medical guidelines. Otherwise, justifications were dis-
played as selected by experts during prior discussions, with-
out further manipulation. Our randomization procedure was
constrained to ensure that randomly selected arguments were
never mentioned in the real-world expert discussion for a
given case, and that all arguments presented were still per-
tinent to their classification choice: for example, an argument
for REM sleep could only be replaced with another argument
for REM sleep.

Finally, classification accuracy (of either AI or human ex-
perts) was measured against the consensus decision of our
round-based adjudication procedure involving a panel of
three independent experts for each classification decision.

Procedure
We recruited twelve sleep technologists as expert participants
for our study. Our experts were recruited with the help of
an allied sleep technologist from a local research clinic who
posted our recruitment letter to a domain-specific Facebook
group with about 4700 sleep technologists from different
countries. Each expert was exposed to both AI assistants in a
counter-balanced manner.

Consent procedure and pre-study survey. After providing
informed consent for participation in the study, experts re-
ported information about their demographics (age, gender, ge-
ographic location) and professional background (professional
or academic training, number of years of professional experi-
ence). We employed the Intolerance of Ambiguity scale, a
psychometric survey instrument developed by Budner [7], to
learn about each expert’s general level of tolerance for ambi-



guity in decision making. We included the phenomenological
denial sub-scale consisting of four statements:

• An expert who doesn’t come up with a definite answer prob-
ably doesn’t know too much.

• There is really no such things as a problem that can’t be
solved.

• People who insist upon a yes or no answer just don’t know
how complicated things really are.

• Many of our most important decisions are based on insuffi-
cient information.

Experts rated their level of agreement for each of the four
statements on a 7-point Likert scale.

Practice phase. Next, experts familiarized themselves for
about 5 minutes with our waveform classification user inter-
face and with the basic interface components common to both
AI assistants.

Tasks. Experts performed the same main task twice, once
with the ambiguity-aware AI assistant and once with the con-
ventional variant, in a counter-balanced order. In each task,
experts were asked to review the waveform of a particular pa-
tient record within a limited time window of 15 minutes. The
patient record was fully pre-classified by the AI assistant and
experts were asked to correct as many of the AI-suggested
labels as possible within the given time limit. Experts could
revise AI-suggested labels by selecting a different sleep stage
label in the classification UI (Figure 1, gray labels 1 and 2).
After each of the two tasks, experts filled out a brief feedback
survey probing for their perception of each AI assistant. The
survey included scales to measure perceived trust towards the
AI assistant [27], cognitive load (NASA-TLX; [25]) during
the task, perceived diagnostic utility and mental support pro-
vided by the AI assistant, and whether experts thought they
would use the AI in practice.

Post-study survey. After completing the tasks, experts com-
pared both AI assistants with respect to perceived reliabil-
ity, trustworthiness, capability and provided an overall pref-
erence. Experts rated each of these four items on a 7-point
Likert scale ranging from 1 (totally version A), 2 (much more
version A than B), 3 (slightly more version A than B), 4 (neu-
tral), etc. to 7 (totally version B). After completing the post-
study survey, participants received a debrief statement inform-
ing them about the simulated nature of the ambiguity-aware
AI in this study. Experts were compensated with CA$50 via
online gift cards (or the equivalent amount in their preferred
currency) for participation in the study, with an average study
duration of one hour.

Analysis
For Q1, we investigated the impact of our ambiguity-aware
AI on experts’ behaviour in reviewing AI-suggested classifi-
cation labels. We used dependent t-tests to compare both AI
assistants with respect to the following outcome measures per
expert: the proportion of contentious cases out of all reviewed
cases (H1a), the number of cases reviewed given a fixed time
window (H1b), and the accuracy rate of expert-provided la-
bels (H1c). For our secondary analysis on the relevance of

arguments for contentious cases (H1d), we used Pearson’s
chi-squared test of independence to compare experts’ aver-
age accuracy at revising AI-suggested labels when presented
with either expert-selected arguments only vs. cases with one
or more randomly selected arguments.

For Q2, we compared experts’ perception of both AI assis-
tants. A possible trend in overall preference (H2a) for ei-
ther of the AI assistants was examined using a one-sample
Wilcoxon signed rank test. Self-reported scores for perceived
trust (H2b) and cognitive workload (H2c) were compared be-
tween both AI assistants using Wilcoxon signed-rank tests.
Finally, we used a Pearson’s chi-squared test of independence
to test whether experts’ overall tendency of ambiguity toler-
ance (ambiguity-tolerant vs. intolerant) was associated with
their overall preference for either AI assistant (preference for
ambiguity-aware AI vs. conventional AI; H2d).

Finally, we used open coding to extract emerging themes
from open-ended survey responses experts submitted after in-
teracting with each AI. Experts were asked to reflect on how
they decided which cases to review and why, what informa-
tion they used to make these decisions, and how information
about the AI’s uncertainty affected their decision making. Re-
curring themes are reported below.

RESULTS

Expert Participants
Based on the pre-study questionnaire, our expert participants
were located in the United States (6), Canada (4), the Euro-
pean Union (1) and one other unspecified location (1). Eleven
of our expert participants reported having at least ten years of
experience working as sleep technologists, and one partici-
pant reported having five to ten years of experience. Out of
the twelve experts, five self-reported as female, six as male,
and one participant did not specify their gender. The distribu-
tion over age groups was: 26-35 (1), 36-45 (7), 46-55 (1), 56+
(2), with one participant who did not specify their age group.

Q1: How does ambiguity-aware AI affect medical assess-
ments?
We hypothesized that the ambiguity-aware AI assistant would
alter experts’ workflow and increase the number of con-
tentious cases they review in the patient recording (H1a). On
average, the proportion of contentious cases out of all cases
reviewed was significantly greater with the ambiguity-aware
AI (M=.38, SE=.05) than with the conventional AI (M=.23,
SE=.03), confirming our hypothesis (Figure 2). This differ-
ence was significant t(11)=-2.82, p < .05, indicating a large
effect size r=.48.

We also hypothesized that using the ambiguity-aware AI
would not negatively affect the number of cases reviewed by
experts (H1b). Our results show that there was no signifi-
cant difference in the number of cases experts reviewed with
the conventional AI (M=197.25, SE=47.60) compared with
the ambiguity-aware AI (M=178.92, SE=57.02), t(11)=.50,
p=.63. This result provides support for our hypothesis that
experts’ efficiency at reviewing AI-suggested labels was not
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Figure 2. Proportion of contentious cases out of all cases reviewed.
Ambiguity-aware AI guided experts’ attention to contentious cases. Con-
necting lines correspond to individual experts.

negatively affected by being exposed to ambiguity explana-
tions for contentious cases. Our projection that experts would
achieve a higher overall labeling accuracy when assisted by
the ambiguity-aware AI compared to the conventional one
(H1c) could not be confirmed, t(11)=1.00, p=.34, r=.53.

Finally, we examined the potential impact of the relevance
of ambiguity explanations for contentious cases on the likeli-
hood that an expert would revise an AI-suggested label cor-
rectly (H1d). We observed a significant association between
the relevance of arguments (whether they contain randomly
selected arguments or not) and experts’ accuracy rate at revis-
ing AI suggestions χ2=16.83, p < .001. In other words, the
chance of a label getting revised correctly by an expert was
significantly higher if the arguments provided were selected
from guidelines via adjudication discussions (i.e., were rele-
vant) than if they were selected from the guidelines randomly
(Figure 3). The odds of a label getting revised correctly by
an expert were 4.48 times higher (odds ratio) if the arguments
provided were selected from guidelines by experts than if they
were selected from the guidelines randomly.

Q2: How is ambiguity-aware AI perceived by medical ex-
perts?
For Q2, we explored experts’ perception of both AI assistants.
Results for our hypothesis that experts would have an overall
preference for the ambiguity-aware AI (H2a) were mixed and
were not statistically significant (p=.88). Except for two ex-
perts who did not have a preference for either AI, preferences
were polarized. Out of the ten participants who expressed a
preference, half preferred the ambiguity-aware AI assistant
and the other half preferred the conventional AI (Figure 4).

While no significant differences could be detected between
both AIs regarding perceived overall trust (p=.47), the
ambiguity-aware variant was considered to have significantly
greater integrity (p<.05), and we observed a trend that experts
had higher confidence in the ambiguity-aware AI than in the
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Random Argument
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Figure 3. Experts’ correction rate for cases with ambiguity explanation.
The relevance of ambiguity explanations affects clinical assessments of
contentious cases. Error bars present 95% confidence intervals.

conventional one (p=.09; Figure 5). These results provide par-
tial support for our hypothesis H2b.

Furthermore, there were no detectably significant differences
between the cognitive load scores of the two AI assistants
on the NASA-TLX scale (p=.77), providing support for our
hypothesis about their comparable mental demand (H2c).

Finally, while experts varied in their level of ambiguity toler-
ance (M=17.25, SE=1.17), ranging from 10 to 26 on a scale
from 4 to 28, no significant effect of ambiguity tolerance on
expert perception could be detected (p=.62), leading us to re-
ject hypothesis H2d.

Qualitative Insights
Our qualitative analysis of participant responses to open-
ended survey questions yielded insights on how our
ambiguity-aware AI assistant can affect experts’ workflows
and their mental model of AI assistants.

Altering expert workflows. Time constraints play an im-
portant role in real-world clinical workflows [58]. Case
triaging—determining the priority for which cases receive an
expert’s attention first—is a common practice in medicine.
Similarly, our ambiguity-aware AI assistant triages based on
ambiguity by prioritizing contentious patient cases that need
more attention from the expert.

Our qualitative findings suggest that some experts found the
ambiguity-aware AI system to be more helpful in reducing
cognitive load compared to the conventional assistant: “As-
sistant B [ambiguity-aware] was more helpful in making me
think as it listed the scoring rules that could apply to the
epoch."

Our analysis further highlights the effectiveness of the
ambiguity-aware AI assistant in redirecting experts’ attention
to contentious cases. That is, six out of twelve experts in
our study explicitly mentioned that their workflow differed be-
tween the two AI assistants, such that they prioritized check-
ing contentious cases using the ambiguity-aware AI: “I first
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trust in automation scale.

chose the areas that the AI had marked as ambiguous and
then tried to check sleep onset, REM onset, and stage 3 as
time allowed."

One major criticism to the traditional approach of represent-
ing AI uncertainty with numeric confidence values is that it
is not sufficient for experts to make sense of the underlying
reasons behind the AI’s uncertainty. Our qualitative evidence
suggests that in choosing between numeric representations of
AI uncertainty and human-interpretable ambiguity arguments
experts found the latter to be more effective in guiding their
attention: “When I saw that the [conventional] AI had lower
than an 80% confidence in the scored stage I tried to double
check that epoch... I mostly used the areas marked as ambigu-
ous [by the ambiguity-aware AI] as opposed to the percentage
of certainty."

In our study, we imposed time limits to understand how
ambiguity-aware AI would help guide expert attention under

the time constraints of real-world workflows. This temporal
constraint was received differently by different expert partic-
ipants. While some experts perceived the timers to be “very
frustrating", others found them useful: “The time limit was
great as my first instinct was to review the entire study and
see if I was in agreement".

Mental models of AI assistants. Experts have preconceived
mental models about the level of ambiguity in different cases.
For instance, experts may draw from their prior experience
of disagreements with other colleagues and have intuitions
about what type of medical assessment is the most difficult
to agree upon in their specific domain (e.g. certain classifica-
tions and stage transitions). It is therefore possible that these
intuitions are projected onto the AI assistant to anticipate
where the AI would likely make mistakes: “I had to think
where do we, as scoring techs, usually have the strongest dis-
agreement and check those epochs."

Beyond preconceptions, we also observed that experts devel-
oped comparative their mentals models about the two types of
AI systems: “AI 1 [ambiguity-aware] was rather impressive
actually. Although in study 2, the persistent arousals may
have interfered with accuracy of AI 2 [conventional]." Fur-
ther, their interaction experience with the same AI assistant
can also shape their judgement of where they will likely dis-
agree with the system: “On ’B’ [ambiguity-aware], I tried to
focus more on the ambiguous epochs indicated by the AI and
then on the staging that the AI in ’A’ [conventional] did not
perform well with." AI assistants could leverage this insight
by grouping contentious cases based on an expert’s reviewing
and correction behaviour to adjust to their internal representa-
tion of specific types of ambiguity.

DISCUSSION
In this work, we studied how highlighting and explaining am-
biguity by AI assistants can aid medical experts in their de-
cision making for contentious clinical cases. We conducted



a within-subjects study to investigate the use of ambiguity-
aware AI assistants by medical experts. Our results show that
the ambiguity-aware AI can alter experts’ workflows by in-
creasing the proportion of contentious cases reviewed while
maintaining overall productivity.

While experts’ overall labeling accuracy was not affected by
providing ambiguity-awareness, we observed a significant ef-
fect of argument relevance on experts’ case correction rate.
This promising insight motivates future research into the de-
velopment and validation of ambiguity-aware AI systems ca-
pable of providing highly relevant ambiguity explanations for
previously unseen cases.

Experts’ overall preferences and perceived levels of trust
for either AI were polarized. Results suggested higher per-
ceived integrity, and a trend towards higher confidence in the
ambiguity-aware AI assistant compared to the conventional
variant. These mixed results may indicate the existence of
other latent variables (e.g., experts’ familiarity with or trust
in automation technology) which could shape experts’ percep-
tion of AI systems generally. Here, we discuss the generaliz-
ability and design implications of our findings and conclude
with limitations of our study and directions for future work.

Design Implications for AI-based CDS Systems
Our findings have implications for different stages in the de-
sign of AI-based CDS systems, ranging from data collection
over model training to the design of user interfaces for AI
systems.

Data collection. In our work, we simulate an AI assistant’s
capability to identify multiple conflicting arguments for why
a medical classification decision may be contentious. To this
end, we rely on discussion metadata from a previous study on
collective adjudication among medical experts [49]. Devel-
oping an AI system capable of generating ambiguity expla-
nations for previously unseen cases would require that struc-
tured information on contentious cases is given in the train-
ing data. While several approaches have been suggested to
collect unstructured, open-ended arguments for contentious
classification cases [12, 16, 51, 55], recent work from the
medical domain demonstrates that imposing structure on the
discussion process can facilitate a deeper understanding of
expert disagreement [48, 49] and accelerate consensus forma-
tion [53]. We recommend that data collection procedures for
AI-based CDS systems be equipped with structured discus-
sion procedures to benefit from these findings and facilitate
the development of ambiguity-aware classification models.

Model training. Our study suggests that expert workflows
and trust can be positively affected by endowing AI-based
CDS systems with the ability to not only make classification
suggestions, but also to identify which cases may be con-
tentious and why. Implementation of such systems would re-
quire that supervised machine learning models are equipped
with additional prediction targets beyond classification labels
alone. These additional prediction targets could include the
likelihood and potential sources of expert disagreement. They
could be integrated either into one joint training process or by
developing several separate models, one for each target. Co-

hen et al. [13] describe some additional requirements and
challenges in this context.

User interfaces. In this work, we evaluate one specific way
of displaying and explaining ambiguity to expert end users
by visually emphasizing contentious cases within a collection
of cases and by providing text-based arguments for conflict-
ing classification choices. While our results suggest that this
representation may be effective, we recommend that future
work may explore more complex design considerations such
as prioritization of cases based on their disagreement likeli-
hood, and interactive filters to group cases which may be con-
tentious for similar reasons.

Generalizability
Our study sheds light on the use of ambiguity-awareness in
the specific domain of sleep stage classification based on
biomedical time series data. Therefore, caution is warranted
in generalizing the results of this study to outside domains.
However, we argue that similar displays of ambiguity expla-
nations can be useful for various types of medical assess-
ments because the issues motivating our study are prevalent
across subspecialties.

Despite the abundance of standardized medical guidelines [4],
expert disagreement is prevalent across medical disciplines
[5, 54], making our approach useful beyond the specific do-
main of sleep health. For example, differential diagnosis
of epilepsy requires that specialized neurologists visually in-
spect EEG data similar in nature to that used in our study.
Ambiguity-aware AI assistants could support the small pool
of specialists world-wide in detecting epileptiform abnormal-
ities [3] and thus increase access to healthcare for patients
with epilepsy in low- and middle-income countries [64, 65].

The issue of expert disagreement in medical assessments has
also been addressed using structured adjudication for other
data modalities, e.g., assessment of retinal images for dia-
betic retinopathy grading [52, 53] or glaucoma risk assess-
ment [24, 39]. These studies suggest that the recommenda-
tions we make for data collection in this work have been con-
sidered independently and may be of merit beyond the devel-
opment of ambiguity-aware AI systems.

Limitations and Future Work
In this work, we conducted a within-subjects study to inves-
tigate the use of ambiguity-aware AI assistants by medical
experts. Due to the tight working schedule of our experts and
the remote nature of our study, it was challenging to control
the timing of each step in the experiment precisely. For in-
stance, participants varied in how long they waited after com-
pleting the first main task before starting the second one. This
lack in experimental control may have impacted the extent to
which exposure to the first AI assistant affected how experts
interacted with the latter one.

In our Wizard-of-Oz study, the ambiguity-aware AI was simu-
lated, in the sense that the assistant presented ambiguity infor-
mation and arguments generated from real expert discussions.
While prior work has demonstrated the potential of predict-
ing the likelihood of expert disagreement directly from raw



medical data [42], future work can focus on training machine-
learning algorithms based on ambiguity explanation data to
provide human-interpretable arguments for previously unseen
contentious cases.

Finally, related work shows that medical practitioners seek to
understand the specific strengths and weaknesses of an AI be-
fore interacting with it [9]. Our work offers similar findings
by showing that explaining AI uncertainty can be useful also
during the interaction and help experts allocate cognitive re-
sources and reassess their level of trust appropriately for each
specific case. While we did not detect a significant effect of
ambiguity tolerance on overall AI preference, we observed a
trend that experts with higher ambiguity tolerance exhibited
more polarized preferences towards either AI assistant. Fu-
ture research may explore how different variables such as per-
sonality traits [7], domain-specific and culture-specific com-
munication styles [47] may shape these expectations and per-
ceptions on the side of medical experts.

CONCLUSION
In this work, we provided a novel perspective on the prob-
lem of how AI assistants for medical reasoning can explain
ambiguous cases to human experts. Our results from a user
study with twelve medical experts comparing a conventional
AI assistant to a simulated ambiguity-aware AI assistant sug-
gest that the system’s ability to not only flag, but also explain
contentious patient cases has merits for end users. In par-
ticular, we observed that in comparison to the conventional
AI, the ambiguity-aware AI was more effective in guiding ex-
perts’ attention to contentious medical cases. In addition, our
results demonstrate that if explanations contain irrelevant ar-
guments, experts’ accuracy at correcting AI-suggested labels
can drop below 50%. Our work has implications for the de-
sign of AI-based technology not only in the field of medicine,
but more broadly in fields that face similar challenges with
classification ambiguity and expert disagreement.
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