
Using Comics to Introduce and Reinforce
Programming Concepts in CS1

Sangho Suh1, Celine Latulipe2, Ken Jen Lee1, Bernadette Cheng1, Edith Law1
1University of Waterloo, 2University of Manitoba, Canada
sangho.suh@uwaterloo.ca,celine.latulipe@umanitoba.ca

{kenjen.lee,bhcheng,edith.law}@uwaterloo.ca

ABSTRACT
Recent work investigated the potential of comics to support the
teaching and learning of programming concepts and suggested sev-
eral ways coding strips, a form of comic strip with its corresponding
code, can be used. Building on this work, we tested the recom-
mended use cases of coding strip in an undergraduate introductory
computer science course at a large comprehensive university. At the
end of the course, we surveyed students to assess their experience
and found they benefited in various ways. Our work contributes
a demonstration of the various ways comics can be used in intro-
ductory CS courses and an initial understanding of benefits and
challenges with using comics in computing education gleaned from
an analysis of students’ survey responses and code submissions.

CCS CONCEPTS
• Applied computing → Education; • Human-centered com-
puting → Visualization.

KEYWORDS
comics; coding strip; dual coding theory

ACM Reference Format:
Sangho Suh, Celine Latulipe, Ken Jen Lee, Bernadette Cheng, Edith Law.
2021. Using Comics to Introduce and Reinforce Programming Concepts in
CS1. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE’21), March 13–20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432465

1 INTRODUCTION
Critical goals in CS1 courses include motivating students and in-
creasing their confidence in programming [9, 15]. This remains a
challenge, however, due to several hurdles: programming requires
students to work with unfamiliar conventions and syntax, and learn
to trace the sequence of execution steps in a program—a difficult
task for novice learners without visualization tools, training, or
both [7, 24]. To address these challenges, recent work [19, 20, 22]
looked at comics, as it is a familiar medium capable of effectively
communicating a sequence of events, with growing evidence and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432465

arguments in support of its use in education [25]. Research in dual
coding theory [3, 5, 23] provides theoretical and empirical support
for comics. The theory posits that we process information using
verbal and visual channels; thus, presenting information in both
codes increases the chance of our remembering the information
compared to when it is presented in only one code [5, 12]. Since
comics combine words and images to create dual-coded informa-
tion [4, 16], it is a potentially ideal “dual-coding medium” [1, 11].
Recent work found evidence of dual coding effects in comics, further
strengthening this idea [2].

for (let day = 1; day <= 100; day++) {

 eat (captain_crunch);

}

let interest;

for (let i = 0; i < 100; i ++) {

 interest -= 1;

}

Instructor’s code Student’s submission

Figure 1: Coding strip example on for loop used for one of
the use cases: writing code fromcomics (UC4). Studentswere
asked to translate the comics into code. A sample submis-
sion shows how comics can be interpreted in multiple ways.

Building on this work, we proposed coding strip, a form of comic
strip with corresponding code (e.g., Fig. 1), as a tool for teaching
and learning programming concepts [22]. While we found several
ways students and instructors wanted to use coding strip, we did not
examine those use cases with students in a classroom setting. As a
result, we do not know what the associated benefits and challenges
are. Moreover, without a report detailing their administration, it is
unclear how instructors can use coding strip. Thus we administered
these use cases in an undergraduate CS1 course and surveyed stu-
dents to understand the benefits and challenges. This experience
report fills this gap and makes the following contributions:
• description of four use cases of coding strips in a CS1 course,
• analysis of perceived usefulness of comics and use cases,
• summary of benefits and challenges with using coding strip.

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

369

https://doi.org/10.1145/3408877.3432465

2 METHODS
Coding strip was used to teach programming concepts in a CS1
course in four ways. In this section, we describe the course, the
four use cases of coding strip, and the post-semester survey.

2.1 Course & Student Information
The study was conducted in a first-year computer science course
(N=49) at the University of Waterloo. The course is designed pri-
marily for students who do not major in computer science (e.g.,
students in Arts). Seventy percent of students in this course were in
the Digital Arts Program, and for them the course was required. The
course followed the creative coding approach [14], where students
learn computer programming by manipulating media (e.g., graph-
ics, sound) and creating interactive graphics. Students used p5.js, a
popular Javascript library for creative coding. Therefore students
learned and programmed using Javascript syntax and conventions.

2.2 Use Cases
While the four use cases of coding strip we tested are not an exhaus-
tive list of all potential use cases (UCs), they represent common
teaching tasks relevant for most, if not all, programming courses.

2.2.1 UC1. Introduce Concept. The Spiderman comic shown in
Fig. 2 was used in week 3 of the course when the concept vari-
able was being introduced for the first time. The course instructor
displayed a slide with the comic before the start of the class for
students arriving early. Once the lecture began, students learned
that variables store values and that associated values can change
over time. The instructor then showed the Spiderman comic again
relating it to how values associated with Peter’s “name”, “mood”,
“age”, and “hobbies” change over time. For this use case, only the
comic was used; its corresponding code was later used in a clicker
question for review (Fig. 4a).

Figure 2: A Spiderman comic used to introduce the idea that
values in variables change (UC1). Here, variables are name,
mood, age, and hobbies.

2.2.2 UC2. Introduce Code. Inspired by prior work [19, 21],
comics were used to scaffold code expression in several ways, as
shown in Fig. 3. Fig. 3a shows a sequence of three lecture slides

Assigning Value to User-defined Variables

= 1; piggyBank

name

variable assignment

statement

assign

Declare, Assign Later vs Declare & Assign (“Initialize”)

// Day 0

// Day n (n = 1, 2, ...)

// Day 0

= piggyBank 1let ; piggyBanklet ;

1 = ;piggyBank

.

.

.

(a) Variable assignment, declaration, initialization

repeats trueLoop while condition is

While Dormammu refuses,

 Dr. Strange says, “I have come to bargain!”

 Dr. Strange dies.

For example, we can express “endless looped time” as

condition

 (dormammu_refuses) {

 print(“I have come to bargain!”);

 dies() ;

}

while

repeat

1: Dormammu, I have

 come to bargain!

2: Dormammu, I have

 come to bargain!

3: Dormammu, I have

 come to bargain!

(b) While loop

lilypadlocation lilypad + 1

+1

lilypad[0]location lilypad[1]

+1

(c) Array

Figure 3: Sequence of lecture slides used to introduce code
with comics (UC2)

which begins with a comic strip that portrays a character putting
money into a piggy bank for the concept variable assignment, fol-
lowed by its corresponding code, and a slide with its related con-
cepts variable declaration and initialization in the same piggy bank
context; in other words, it (1) begins with an intuitive, relatable ab-
straction, (2) connects it to its code expression, and (3) explains the
concept by comparing and contrasting with related concepts. Fig. 3b
shows another sequence of slides which progresses from comic to
English and to code; students were shown a clip from the movie Dr.
Strange [6] in which Dr. Strange traps a villain Dormammu in an
endless looped time; then, the instructor showed three panels of
an image (first slide of the sequence) from the clip to highlight the
repeating sequence; this scenario was then presented in English
(with indentations to mimic the code syntax) and finally its corre-
sponding code. Fig. 3c shows a progression from a slide with comic
& English to a slide with comic & code. In this sequence, the goal
was to introduce the code expression for the array and highlight
how array indices start at 0, not 1. As shown, students were first
shown the comic with a frog jumping from one lily pad to another.
In the following slide, the expressions “lilypad” and “lilypad + 1”
changed to “lilypad[0]” and “lilypad[1]” to show the corresponding
code expressions in array syntax. The “+1” above the frog was used
to provide an intuitive explanation for why array indices start at 0
and not 1. This is something novice learners often struggle to grasp
because they think indices represent ordinal numbers (e.g., index
1 points to 1st element); they do not realize that indices represent
offsets (i.e., index 1 points to 2nd element, index 1 means 1 position
away from the 1st element).

2.2.3 UC3. ReviewConcepts and Code. After introducing con-
cepts and code expressions with comics, students can review them
using the same comic, its code, or context. Fig. 4 shows three clicker

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

370

What does this code print at 2nd frame?

let name = “PETER PARKER”;

let mood = “Baby”;

let age = 1;

function setup() {

 age = 16;

 print(age);

}

function draw() {

 age = 20;

 print(age);

}

A 1

B 2

C 16

D 20

(a) UC3-variable1

What does this represent?

A. Declaring variable

B. Assigning value to variable

C. Creating constant

D. None of the above

(b) UC3-variable2

What is the index of the last element?

lilypad[?]

A. 0

B. 3

C. 4

D. 5

E. 6

(c) UC3-array

Figure 4: Examples of reviewing with clicker questions (UC3)

questions used to review concepts and code that were presented in
Fig. 2 and 3. Fig. 4a required students to track changing values in a
variable “age” which was previously shown in the Spiderman comic
(Fig. 2). Fig. 4b asked students to select an appropriate abstraction
(“assigning value to variable”) for the piggy bank illustration from
Fig. 3a. Fig. 4c was used to test whether students understood that
array indexing starts from 0 as they were taught with Fig. 3c.

2.2.4 UC4. Write Code from Comics. Another use case sug-
gested in prior work [22] was coding exercises, that is, have stu-
dents translate comics into code. Fig. 1 and 7 show three coding
strips used for the exercises. During the lecture, students were
shown the comics without the code and were asked to submit their
code on Socrative, a web-based response system [18]. Since it is
unreasonable to expect students to submit the exact same code as
the instructor, students were promised full participation marks for
simply submitting. After students submitted, the instructor showed
the list of submissions and his code, and used submissions that
reflect students’ unique interpretation of comics to highlight that
coding is a tool for creative expression.

2.3 Survey
At the end of the semester, we asked students to complete a survey
to evaluate their experience with each use case and the idea of
using comics (we used the word comics instead of coding strip
in the survey to avoid unnecessarily overloading students with
new terminology). While one of the authors was the instructor
of the course, we followed the guidelines from the university’s
ethics committee to ensure we did not exert undue influence on
the students to give us permission to use their data or to answer
with any bias. Specifically, a research assistant unaffiliated with
the course administered the Google form survey via the course’s
online platform and collected the survey responses. Students were
assured the instructor would not know who had permitted the use
of their data until after their final course grades were submitted.

In order to help students remember and differentiate the four
different use cases, we included a page in the survey with the de-
scription and lecture slides used for each use case (Fig. 1, 2, 3, 4, 7
were used), before the questions about each use case. The survey be-
gan with some demographic and programming attitude questions,

and then included questions about the use of comics, which pro-
gressed from questions about the use of comics in general and then
to questions specific to each of the four use cases. At the end, they
were also asked to specify whether they thought other computer
science instructors should use comics. Scale-based questions about
the comics used a 7-point Likert scale where 1 indicated “Really
Disliked” and 7 indicated “Really Liked”.

3 RESULTS
We present the analysis of survey responses about all use cases and
analysis of code submissions for use case 4 (UC4). Specifically, we
describe what students liked and disliked about each use case, as
well as why students do or do not recommend using comics in other
computing courses, in order to present the benefits and challenges
with using comics. To ensure anonymity, we refer to students as
S1...S41.

3.1 Demographics
Of the 49 students enrolled in the course, 42 students completed
the survey and 41 students consented to the use of their data for
research. Hence, our analysis is based on these 41 students (15
M, 26 F; Arts: 28; Science: 9; Health Science: 4). Most students
were undergraduate students in their first or second year (18 First,
15 Second, 4 Third, 3 Fourth), with one student in a post-degree
program. The majority of the students were taking the course to
meet degree requirements (28), while the rest (13) were taking
the course out of interest in learning programming. Half of the
students were retaking the course (21 Retake, 20 First). In terms
of their programming experience before the course, most students
had limited or no experience (15 No Experience, 18 Several Hours
or Days, 8 Several Weeks or Months). Students were evenly split in
terms of their interest in learning programming at the beginning of
the course (15 Not Interested, 16 Interested to Certain Degree, 10
Highly Interested). At the beginning of the course, more than half
of the students (25) perceived learning programming as “difficult”,
while 14 saw it as “manageable” and 2 saw it as “easy”.

3.2 Analysis of Each Use Case
3.2.1 UC1. Introduce Concept. Students generally liked being
introduced to concepts with comics (M=4.9/7, 95%CI=[4.3,5.4]).
Thirty-five students (85%) who rated it positively (scores of 4-7)

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

371

1

2

3

4

5

6

7

(UC1)
"How do you feel about

being introduced to concepts
with comics?"

(UC2)
"How do you feel about

being introduced to code
with comics?"

(UC3)
"How do you feel about

reviewing concepts & code
with comics?"

(UC4)
"How do you feel about
practicing writing code

using comics?"

1 (Really Disliked) | 7 (Really Liked)

Figure 5: Students’ assessment of four use cases

explained that they liked it because it was not only “fun” (S1, S29),
“engaging” (S32), “related to something[, such as superheroes, they]
like” (S8), “an interesting way to learn [the concepts]” (S33, S37),
but also “piqued [their] interest for the concept” (S9), and made
programming less “scary” (S40) and the “material less dry” (S32).

Students also mentioned that comics helped them better un-
derstand the concepts (S7, S28, S33, S35), as they explain “why”
(S17), help them “visualize the concept” (S13, S15, S41), “simplify
the tricky concepts into a more digestible format” (S26), provide
“good analogy” (S22) and “metaphor” (S2), and give “another point
of view” (S28) to help make sense of the concept. The sequential
nature of comics was also helpful in understanding the procedural
aspect of the concepts:

“[Comics] gave a logical explanation to the concepts
applied. A lot of the time, we don’t know what the
program is doing; the comics made a logical sequence
of concepts that made it easier to learn.” (S19)

Another important benefit was that comics helped students re-
member and easily recall the concepts; S27 and S5 mentioned that
they recalled the comics “during the midterm” (S27) and whenever
they needed to remember, for instance, “what loop does” (S5).

Six students (15%) who rated this use case negatively (scores of
1-3) offered two major explanations. One was that the comics were
confusing (S3, S16, S20); S25 said he had difficulty understanding
“how [the comics and concepts] correlate.” The other argument
was that the method is “not applicable to all students” (S34), which
coincided with S27’s comment on his preference for learning with
analogy alone to learning with comics.

Students also shared several ideas on how we could improve this
use case. S30 observed that since “it may be harder to understand
[the comics] if the student isn’t familiar with the [concept already]”,
we may want to use comics some time after the student has learned
the concept. Several students (S9, S20, S23) also suggested that
comics may be more useful when introducing “more complex topics,
like loops and arrays” (S9) and “concepts which need step-by-step
explanations (ex: loops)” (S23). This seemed to align with S31, who
found the frog comic (Fig. 3c)—which shows a frog leaping from
one lily pad to another in step-by-step manner to illustrate looping
through an array—more useful than the variable comic (Fig. 2).

3.2.2 UC2. IntroduceCode. Students also liked being introduced
to code with comics (M=5/7, 95%CI=[4.4,5.6]). Many of the benefits
reported for this use case were similar to those for UC1: it was
“engaging” (S7), “fun” (S31), and a nice way to introduce “the code
in a more interesting way” (S14, S26). Several students also reported
that introducing the code with comics made the code “easier to
remember” (S5, 18) compared to being introduced to code with text

only. S40 also contrasted it with the text-only approach to point out
that learning code with comics allowed her to focus on understand-
ing the code instead of merely memorizing it, which she resorted
to whenever code was presented in text only.

Students (S1, S35, S40) reasoned that comics made code “easier
to understand” (S1) because they provide visual structure (S39)
and show “the logic behind code” (S22). S19 explained how comics
helped her make sense of loops: “loops are hard to understand
because [you need to make sense of] the exit point and amount
of times it should run, but when Dormammu finally says stop, it
made sense way easier than learning it from scratch.” Finally, some
students mentioned that being introduced to code in this manner
“relieved some anxiety” (S2) and helped them develop a positive
attitude towards learning programming (S26).

Like UC1, a few students mostly found comics “confusing” (S15)
and “not useful” (S17). S3 and S24 thought it was “unnecessary”
because they assumed “all [students already] understood the con-
cept of a loop.” Since most students, however, commented on their
usefulness, it seems that it was a welcome intervention for most
students other than a few who already understood the code.

3.2.3 UC3. Review Concepts and Code. Students also enjoyed
reviewing the learned concepts and code with comics (M=4.9/7,
95%CI=[4.4,5.5]). They said it helped them better understand and
remember the review content (S8, S31) and that it is “fun” (S11, S21)
and “a good way to refresh memories” (S20, S22), as it makes them
“pay attention” (S1). S14 shared that while “[he] was confused by
some comics”, he still liked it “because [reviewing with comics]
was a good checkpoint for [him] to determine if [he] can apply the
concept.” S19 described how helpful one of our review questions
(Fig. 4c) was for her understanding of array:

“Absolutely brilliant. Using a leap frog going through
an array because we don’t know how to grasp the
concept that the program goes from 0 to 1 to 2 in a
set of array ... this HELPED A LOT.” (S19)

While it needs further testing, we also found that students gen-
erally performed better on clicker questions when they referenced
comics (Fig. 4). The average percentage of correct answers for non-
comic based clicker questions (60%) was lower than that of the
comic-based clicker questions (74% for UC3-variable1, 67% for
UC3-variable2, 86% for UC3-array). We also directly compared
UC3-variable1 with its isomorphic (i.e., corresponding in format/-
task) question, which was administered in the next class without
comics references (i.e., “let x = 1;” instead of “let age = 1;” and no
comics in the slide), and found that only 34% of the students re-
sponded correctly compared to 74% for UC3-variable1. We did
not administer isomorphic questions for the other two.

While most students rated this use case positively, some students
reminded us that a few factors could potentially undermine stu-
dents’ experience with this use case. S15 noted that he was able to
enjoy reviewing with comics because he already knew the concept
well enough and thus did not find the comics confusing. S40 who
rated this use case highly (6/7) warned us that since this use case
affects students’ grades, we may want to ensure that the comics
are clear. While the clicker question grades served more or less as
a participation grade and represented a small portion of the overall
grades (they were 5% of the total grade and the best 75% of clicker

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

372

grades were used), a few students were careful about fully sup-
porting it as they felt some students got certain questions wrong
“simply because the [comic] was confusing, rather than them not
understanding the topic” (S3).

3.2.4 UC4. Write Code from Comics. Compared to other use
cases, students were not as positive about the idea of practicing
writing code from comics (M=4.2/7, 95%CI=[3.6,4.8]). Many students
found the exercise “difficult” (S11, S14, S18, S20, S25) because they
had to write code and interpret comics. This is understandable
since students can find writing code from scratch challenging and
interpreting comics difficult due to the task’s open-ended nature.
Since these resulted in a less positive experience and confusion
among some students (S3, S5, S24), this exercise would benefit from
clear guidelines with examples of code submissions. On the other
hand, there were also students who understood it after the first
time (S12), were interested in “learn[ing] more” (S8), found it “fun”
(S18, S31) and “very useful to practice and go over the concepts
in a limited time” (S26). Some students felt the exercise “[made]
programming seem less intimidating” (S39) and more interesting:

“I have always tried to find the ‘right’ answer because I
have been educated that there is only one right answer
and I need to find it. So when I saw that [comic] in
class, it seemed like a big difficulty and I didn’t know
what to do. However, this made me more interested
in programming after realizing that in programming,
there is no right answer and the result depends on
what I’m creating and expressing.” (S40)

This comment on how the exercise changed S40’s view on pro-
gramming was an unexpected, yet exciting, finding. Upon analyzing
students’ code submissions, we found many interesting interpreta-
tions of comics, some of which are shown in Fig. 1 and 7.

3.3 Analysis of Overall Experience
Students, in general, were highly positive (M=5.2/7, 95%CI=[4.7,5.7])
about the overall idea of learning programming using comics.When
students were asked at the end of the survey whether they would
recommend that other instructors teaching computing courses use
comics, more than half of the students were in support, and very
few were against it (25 Yes, 11 Maybe, 5 No). Students were asked
to elaborate on their response and we present the analysis of their
answers below.

1 (Really Disliked) | 7 (Really Liked)

1

2

3

4

5

6

7

"Based on your experience this term,
how do you feel about learning
programming using comics?"

Yes Maybe No
0

5

10

15

20

25

"Would you recommend other
instructors in computing courses

to use comics?"

Figure 6: Students’ assessment of comics in general

if (sleepEarly) {

 studyNextDay();

} else {

 cannotStudyNextDay();

}

if sleepTime = 21.5 {

 nextDay = ‘okay’;

} else if sleepTime = 0.75 {

 nextDay = ‘ehh’;

}

Instructor’s code Student’s submission

(a) Boolean

let wifi = false;

while (!wifi) {

 move();

 wifi = connectToWifi();

 }

sendSnap();

let wifi;

if (boy => locker) {

 wifi = true;

} else {

 wifi = false;

}

Instructor’s code Student’s submission

(b) While loop

Figure 7: Two of the three coding strips used for writing
code from comics (UC4). One other coding strip is Fig. 1

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

373

3.3.1 Reasons for Recommending. More than 60% of students rec-
ommended the use of comics in other computing courses for a
variety of reasons. Many students recited the benefits from previ-
ous sections, including the comics being “fun” (S21, S35), “engaging”
(S18, S32), “motivating” (S31, S35), helpful in “remembering” the
concepts and code (S22, S27). S7, who was taking the course for
the second time, compared his experience from the previous term
to stress that comics helped him understand the materials better.
Students also mentioned that comics help “break down big coding
ideas” (S31) and “give a visual representation of what is happening”
(S20) and that it is an “appealing way to learn” (S8) for students
who prefer learning with visuals (S6, S12, S15, S39). Last but not
least, they also spoke of the positive impact it has on the classroom
atmosphere by making lectures more engaging (S1, S20, S21, S29).

Students were divided, however, on the extent to which comics
may be useful in other computing courses (Figure 6). S32 said, “it
definitely works for the lower level CS classes. Maybe not for the CS
major classes, though.” On the other hand, S22 believed it could be
used for learning any programming language. S8 noted that since
the “majority of people like comics”, it would be a welcome inter-
vention in any course. S4, who had prior programming experience,
speculated that while he did not need the comics, other students
with a little programming background would like learning with
comics.

3.3.2 Reasons for Reservation. More than a quarter of students
had reservations about comics being used in other CS courses. S27
said it would be okay “if they don’t solely rely on it as a teaching
method.” Some were hesitant because they felt that comics’ use-
fulness depends on a number of factors, such as “[the clarity of
the] the [comics’] link to code” (S24), “[its] content”, “the student’s
learning style” (S10), “how [much they] enjoy/understand comics”
(S1), and which use cases are used (S15, S23, S36).

3.3.3 Reasons for Not Recommending. Five students who did not
recommend the use of comics in computing courses explained that
they found comics “confusing” (S3), not “useful” (S17), not suiting
their “learning style” (S25) and “hard to see from the back [of the
classroom]” (S34). S38 thought that “because all computing courses
cater to different needs [of the students] it is not for everyone.”

3.4 Analysis of Demographics
We examined whether students’ assessment of the overall use of
comics and each use case varied by demographic attributes—gender,
major, the reason for taking the course, prior experience with the
course, prior programming experience, prior interest in learning
programming. We found no statistically significant differences be-
tween the groups within these categories. This is noteworthy be-
cause it suggests that students’ experiences with coding strips are
similar, regardless of their backgrounds. However, our sample size
was small and differences across these demographics may emerge
in future work with larger samples.

4 DISCUSSION
Students generally enjoyed learning with comics and experienced
various benefits, some of which were related to dual coding effects,
such as being able to “remember” and “understand” the concepts
and code more easily [2, 10, 12]. Although our study does not

contribute any measurement of learning impact, it still provides
valuable findings to help facilitate the use of coding strip. Specifically,
it contributes an understanding of how coding strips can be used
to support teaching in an undergraduate CS1 course, how students
perceive them, and what needs to be improved.

Our study also found that while the idea of learning style has
been dismissed due to lack of evidence [8, 13, 17], numerous stu-
dents still held this misconception and cited their learning style as
the reason for liking or recommending the comics. Likewise, this
was also the reason some students disliked or hesitated to recom-
mend comics: they thought non-visual learners do not benefit from
comics as it is “visual-based.” In addition to stigma associated with
comic books, we find that this misconception about learning style
may be another challenge that needs to be addressed since it seems
to significantly impact students’ perception and acceptance.

As we move forward, the following issues need to be addressed.
First, while the use cases were generally well-received, the coding
exercise (UC4) needs to be improved. For instance, it needs a clear
process to guide students and a variety of examples to help them
feel comfortable with the idea that code can have multiple interpre-
tations. Also, a number of students attributed the ambiguity of the
comics causing confusion as the reason for disliking the use cases
or not recommending comics. While a few students described what
caused the confusion (e.g., lack of clear link between the comics and
code), there is still a lack of clear knowledge on what (e.g., particular
design aspect of the comics) made them confusing. Finally, our re-
sults imply that students’ perception of coding strips can depend on
the timing of when the comics are introduced; more investigations
are needed to understand these more nuanced effects.

While we used comics throughout the course, they were not
used for all concepts and code. The concepts spanned multiple
levels of difficulty (i.e., variable as “easy”, loop as “medium”, and
array as “hard”). However, it is unclear if and how this may have
impacted students’ assessment. Furthermore, the students in the
class were non-CS majors, with most of the survey responses (68%)
coming from students in the Digital Arts Program. Thus we need
to investigate whether CS majors experience the same benefits.
While we explored several ways coding strips can be used in this
study, we did not explore what aspects made certain coding strips
more or less useful or confusing for learners. As future work, we
can analyze specific coding strips’ styles and their learning effects
in order to develop design guidelines for coding strips. Finally, we
need to find out in what alternative format or ways the instructors
should use coding strips to accommodate blind or visually impaired
students.

5 CONCLUSION
In this work, we tested four use cases of coding strips and contribute
an experience report to share how they were used, how each use
case was perceived by students, as well as the benefits and chal-
lenges associated with each use case. While the four use cases we
deployed are not exhaustive, they address basic teaching tasks and
we believe this contributes a useful report for instructors interested
in using coding strips to introduce programming concepts and code.
While more work is needed to understand the most effective ways
to use coding strips, our work contributes an essential first step
towards their use in computing education.

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

374

6 ACKNOWLEDGEMENT
This research was funded by Learning Innovation and Technology
Enhancement (LITE) Grant at the University ofWaterloo. We would
also like to thank the students for their participation and reviewers
for their feedback and suggestions.

REFERENCES
[1] Paul A Aleixo. 2017. How the humble comic book could become the next class-

room superhero. https://theconversation.com/how-the-humble-comic-book-
could-become-the-next-classroom-superhero-73486. Accessed: 2020-06-17.

[2] Paul A Aleixo and Krystina Sumner. 2017. Memory for biopsychology material
presented in comic book format. Journal of Graphic Novels and Comics 8, 1 (2017),
79–88.

[3] James M Clark and Allan Paivio. 1991. Dual coding theory and education. Edu-
cational psychology review 3, 3 (1991), 149–210.

[4] Neil Cohn. 2016. A multimodal parallel architecture: A cognitive framework for
multimodal interactions. Cognition 146 (2016), 304–323.

[5] Chris Delp and Jeffrey Jones. 1996. Communicating information to patients: the
use of cartoon illustrations to improve comprehension of instructions. Academic
Emergency Medicine 3, 3 (1996), 264–270.

[6] Scott Derrickson. Doctor Strange. Marvel Studios, Hollywood, 2016.
[7] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-

ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, 579–584.

[8] Paul A Howard-Jones. 2014. Neuroscience and education: myths and messages.
Nature Reviews Neuroscience 15, 12 (2014), 817–824.

[9] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
Proceedings of the second international workshop on Computing education research.
97–108.

[10] John Kounios and Phillip J Holcomb. 1994. Concreteness effects in semantic
processing: ERP evidence supporting dual-coding theory. Journal of Experimental
Psychology: Learning, Memory, and Cognition 20, 4 (1994), 804.

[11] Barbara J McClanahan and Maribeth Nottingham. 2019. A suite of strategies for
navigating graphic novels: A dual coding approach. The Reading Teacher 73, 1
(2019), 39–50.

[12] Allan Paivio. 1975. Coding distinctions and repetition effects in memory. The
psychology of learning and motivation 9 (1975), 179–214.

[13] Harold Pashler, Mark McDaniel, Doug Rohrer, and Robert Bjork. 2008. Learning
styles: Concepts and evidence. Psychological science in the public interest 9, 3
(2008), 105–119.

[14] K Peppler and Y Kafai. 2005. Creative coding: Programming for personal expres-
sion. Retrieved August 30, 2008 (2005), 314.

[15] Andrew Petersen, Michelle Craig, Jennifer Campbell, and Anya Tafliovich. 2016.
Revisiting why students drop CS1. In Proceedings of the 16th Koli Calling Interna-
tional Conference on Computing Education Research. 71–80.

[16] Shayna Pond. 2017. Comics and Dual Coding Theory. http://shaynapond.oucreate.
com/blog/uncategorized/comics-and-dual-coding-theory/. Accessed: 2020-03-
11.

[17] Doug Rohrer and Harold Pashler. 2012. Learning Styles: Where’s the Evidence?.
Online Submission 46, 7 (2012), 634–635.

[18] Socrative. 2020. https://www.socrative.com/. Accessed: 2020-04-18.
[19] Sangho Suh. 2019. Using Concreteness Fading to Model & Design Learning

Process. In Proceedings of the 2019 ACM Conference on International Computing
Education Research. 353–354.

[20] Sangho Suh. 2020. Promoting Meaningful Learning by Supporting Interplay
within Abstraction Ladder. In 2020 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE.

[21] Sangho Suh, Martinet Lee, and Edith Law. 2020. How DoWe Design for Concrete-
ness Fading? Survey, General Framework, and Design Dimensions. In Proceedings
of the 19th ACM Conference on Interaction Design and Children.

[22] Sangho Suh, Martinet Lee, Gracie Xia, and Edith Law. 2020. Coding Strip: A Peda-
gogical Tool for Teaching and Learning Programming Concepts through Comics.
In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE.

[23] Ling Wang. 2014. The effects of single and dual coded multimedia instructional
methods on Chinese character learning. Chinese as a Second Language Research
3, 1 (2014), 1–25.

[24] Benjamin Xie, Greg L Nelson, and Amy J Ko. 2018. An explicit strategy to scaffold
novice program tracing. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. 344–349.

[25] Gene Yang. 2016. Why comics belong in the classroom. https://www.youtube.
com/watch?v=Oz4JqAJbxj0&feature=youtu.be. Accessed: 2020-02-10.

Paper Session: CS1 / CS2 SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

375

https://theconversation.com/how-the-humble-comic-book-could-become-the-next-classroom-superhero-73486
https://theconversation.com/how-the-humble-comic-book-could-become-the-next-classroom-superhero-73486
http://shaynapond.oucreate.com/blog/uncategorized/comics-and-dual-coding-theory/
http://shaynapond.oucreate.com/blog/uncategorized/comics-and-dual-coding-theory/
https://www.socrative.com/
https://www.youtube.com/watch?v=Oz4JqAJbxj0&feature=youtu.be
https://www.youtube.com/watch?v=Oz4JqAJbxj0&feature=youtu.be

	Abstract
	1 Introduction
	2 Methods
	2.1 Course & Student Information
	2.2 Use Cases
	2.3 Survey

	3 Results
	3.1 Demographics
	3.2 Analysis of Each Use Case
	3.3 Analysis of Overall Experience
	3.4 Analysis of Demographics

	4 Discussion
	5 Conclusion
	6 Acknowledgement
	References

