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Abstract— Service robots are becoming a widespread tool
for assisting humans in scientific, industrial and even domestic
settings. Yet, our understanding of how to motivate and sustain
interactions between human users and robots remains limited.
In this work, we conducted a study to investigate how surprising
robot behaviour evokes curiosity and influences trust and
engagement in the context of participants interacting with Re-
cyclo, a service robot for providing recycling recommendations.
In a Wizard-of-Oz experiment, 36 participants were asked to
interact with Recyclo to recognize and sort a variety of objects,
and were given object recognition responses that were either
unsurprising or surprising. Results show that surprise gave
rise to information seeking behavior indicative of curiosity,
while having a positive influence on engagement and negative
influence on trust.

I. Introduction

Service robotics is a nascent technology for assisting with
tasks in our everyday lives, from guiding users through
museums [16], airports [38], shops [28] and offices [4],
to assisting the blind [2] and health care workers [25].
Beyond performing tasks, service robots can also serve
social functions, such as providing companionship [7] and
encouraging users to adopt healthy habits (e.g., exercise)
[9]. A major challenge in designing service robots is to
make them engaging, such that human users are motivated
to initiate and sustain interactions with the robot over an
extended period of time.

Prior work has explored a variety of factors that influence
engagement, including the robot’s physical appearance [24],
[35], performance (e.g., reliability, predictability), behavior
(e.g., anthropomorphism, gestures) [31], task structure, cul-
tural factors [1], [15], as well as people’s prior experience
with and impressions of robots. One under-explored factor
is curiosity, which has been shown in human-computer
interaction research to play a significant role in affecting
user engagement, in the context of crowdsourcing systems
[17], interactive displays [36], educational technologies [23]
and games [37]. The core idea is that by designing systems
to present stimuli that are novel, conflicting, uncertain,
complex, or surprising, human users will be intrinsically
motivated to engage with the system for a longer period of
time in order to satisfy their “desire to know, to see, or to
experience” [19]. Likewise, several works have found that
unpredictable behavior of robots [30] and virtual agents [3]
can lead to engagement, potentially due to higher levels of
perceived anthropomorphism [8], [34]. At the same time, the
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lack of predictability and transparency can negatively affect
trust and reliance [14], [18].

In this work, we conducted a Wizard-of-Oz study to inves-
tigate curiosity as a mediator of engagement in human-robot
interaction, with 36 participants using Recyclo, a service
robot that recognizes objects and advises users on their recy-
clability. Our results show that unpredictable robot responses
gave rise to surprise, which in turn, elicited both positive and
negative reactions from users. On the one hand, surprising
robot responses violated users’ expectations of the robot’s
capabilities and led them to choose interaction strategies to
test their theories about how the robot functions, both of
which reflect their curiosity. On the other hand, the lack of
predictability negatively impacted users’ perceptions of the
robot’s reliability and their trust in the robot’s guidance.

II. RelatedWork

Many robotic systems have implemented curiosity as a
mechanism for directing the robot’s exploratory behavior.
Curiosity-driven reinforcement learning [20], [32], [33], for
example, encourages agents to explore parts of the state space
that yield the highest information gain, as opposed to the
best reward. Curious robots were shown to be practical—
they learn more efficiently and can outperform standard
reinforcement learning, especially in cases of rare rewards
[11]. Our work is different in that we study how the robot’s
behavior evokes the curiosity of a human interacting with
the robot, and how that in turn affects engagement and trust.

Prior work has shown that robot performance can mod-
ulate both engagement and trust. Imperfect robots can in
fact be more engaging. Hamacher et al. [13] found that
the majority of participants preferred a faulty robot that is
socially interactive (e.g., appears sad and apologetic after an
error) than a non-social but perfect robot, even when tasks
took longer to complete due to the additional interactions. In
Ragni et al. [26], participants perceived erroneous robots to
be less competent and intelligent, but found the interaction
more fluid, joyful and interesting, even though team task
performance was compromised. On the flip side, inconsistent
robot performance can negatively impact trust. Lee and See
[18] found that performance-related metrics (e.g., reliability,
false alarm rate, failure rate) are strongly associated with
trust development and maintenance, while robot attributes
(e.g., proximity, personality, anthropomorphism) are only
weakly associated. Hancock et al. [14] identified reliability
(i.e., what the automation does), transparency (i.e., how the
automation operates) and intention (i.e., why the automation
was developed) as three important factors that contribute to
the development of human-robot trust. Brooks et al. [5] found



(a) step 1: robot prompts user to place
an object onto its tray

(b) step 2: user chooses an object
and places it on the tray

(c) step 3: robot identifies the object and
makes recycling recommendations

(d) step 4: user puts the object into
the trash or recycling bin

Fig. 1. Interaction with Recyclo

that failures make robots seem less capable, lower trust, and
make users reluctant to use the robot’s services again. How-
ever, the negative reaction caused by failure can be mitigated
by providing human support (i.e., notifying people to take
actions to alter the situation) or task support (i.e., the robot
performing an action to recover from the mistakes). Finally,
Mota et al. [22] found that people gauge the trustworthiness
of robots via testing, e.g., by trying different strategies to see
how the robot would respond. In our work, we manipulate
the predictability of robot responses, e.g., by making them
surprisingly accurate or inaccurate, in order to study their
impact on curiosity, engagement and trust.

III. Framework Development

To develop a conceptual framework for studying curiosity
in human-robot interaction, we created Recyclo—a Wizard-
of-Oz recycling robot whose function is to help users deter-
mine whether objects are recyclable or not—and conducted a
pilot study to qualitatively assess the reactions of participants
in response to Recyclo’s object recognition and recyclability
judgments. Results from the pilot study were used to inform
the design of our main experiment.

A. Recyclo

Recyclo is a service robot whose function is to help users
recycle. Different from [10], [34], [40], Recyclo identifies
objects that users present, classifies their recyclability, then
makes a recommendation to users to put the object into the
trash or recycling bin. To process each object, users interact
with Recyclo via a sequence of steps, as shown in Figure
1. First, users select an object and place it on the middle
rack of the robot monitored by a webcam. Recyclo displays
a busy indicator, showing users that it is in the process
of identifying the object. Upon observing the object placed
by users, Recyclo visually (via a screen) and verbally (via
text-to-speech software) communicates its response, telling
them what the object is (e.g., “it is a pen”) and providing a
recommendation as to whether the object should be recycled
(e.g., “put it in the recycling bin”) or discarded (e.g., “put it
in the trash bin”). At this point, users are asked to imagine
that this is a real world scenario where they are making
the final decision about recyclability, decide whether they
agree with or trust Recyclo’s recommendation and throw
the object into the bin it specifies, or do the opposite. Built
using the Turtlebot platform, Recyclo is remotely controlled

by a human operator, who monitors the interactions via
Teamviewer (a remote access software), identifies the object
that users present to Recyclo, constructs and sends a response
(i.e., what the object is and whether it is recyclable) back.

B. Pilot Study

We conducted a pilot study with 12 participants to qual-
itatively assess the reactions of participants in response to
Recyclo’s object recognition and recyclability judgments.
The study was conducted in a conference room scattered
with objects. Participants were first asked to choose from a
pre-determined set of 10 objects, as shown in Figure 2—
5 commonly recycled objects (made of paper, metal, or
plastic) and 5 more ambiguous ones in terms of recyclability
(made of mixed materials)—to show to Recyclo. Participants
could additionally choose other objects (either in the room
or ones they brought themselves) and stop at any time by
informing the researcher. For each object, the human operator
generated an object recognition response with different levels
of correctness, specificity and predictability on the fly. For
recyclability, the human operator generated a best guess
response based on the assumption that an object is recyclable
if it is made of a single, recyclable material (such as metal,
plastic, paper, glass or rubber) and not recyclable if it is an
eWaste product, contains chemicals, or is not typically found
in recycling bins.

Fig. 2. Objects in the pilot study

There are several observations from the pilot study that
informed our experimental design. First, we observed that
certain types of responses elicited a strong feeling of surprise
from participants. Accurate and unusually specific responses
(e.g., a remote control identified as “panasonic remote”)
as well as inaccurate and completely off responses (e.g.,
a pen identified as a “coin”) both contributed to surprise.



TABLE I
Response Types

response type description examples correctness specificity conceptual
proximity

correct-general (CG) correct and generic response bottle correct general exact
correct-specific (CS) correct but unusually specific response, such as the inclusion

of brand names, adjectives or detailed description of more
than one attribute of the object

“panasonic remote control”, “stylish
pair of glasses”, “scissors with angular
white handle”

correct specific exact

incorrect-close (IC) an incorrect but believable response, such as an object
that shares at least two attributes in common with what is
presented, in terms of function, color, shape, size or material

paper recognized as “napkin” incorrect general close

incorrect-wayoff (IW) a severely incorrect response, e.g., an object that shares no
attributes in common with the presented object in terms of
function, color, shape, size of material

paper recognized as a “mug” incorrect general far

incorrect-nonsense (IN) a nonsensical response, e.g., an object that should not exist
in a given environment

lanyard recognized as “snake’ incorrect general very far

Furthermore, we also observed testing behavior: one partic-
ipant presented Recyclo with the same object multiple times
under different angles or two very similar objects (e.g., two
different kinds of tape), in order to test the robot.

Second, participants showed a strong preference for pre-
senting the robot with objects they brought themselves to the
experimental setting (e.g., their wallet, phone or jewelry), as
opposed to using the objects available in the room. They
reported feeling less surprised by robot responses on the
ten objects that we provided compared to the objects they
chose themselves, believing that the robot was pre-trained
to generate the appropriate responses for those objects, or
that other objects were planted by the experimenter in the
vicinity. Providing a pre-defined set of objects for which
responses can be fixed has the obvious benefit of minimizing
bias that may be introduced by the experimenter generating
the responses on the fly. However, observations from the
pilot study show that doing so makes the experiment much
less ecologically valid, as we cannot reliably elicit a genuine
sense of surprise from participants. These observations form
the basis of our experimental procedure for the main study.

C. Framework

Based on findings from the pilot study and prior literature,
we hypothesize that the surprise that users experience when
confronted with unexpected robot responses will cause them
to become curious and seek information to make sense of the
robot’s behavior. At the same time, surprise will positively
impact user engagement and negatively impact trust. Our
conceptual framework is illustrated in Figure 3.

Fig. 3. Conceptual Framework

To experimentally validate this conceptual framework, we
manipulated robot responses by making them more or less
surprising based on how participants reacted to different
types of robot responses in the pilot study. Table I shows the
five types of object recognition responses based on three key

dimensions, namely correctness (i.e., whether the response is
correct or incorrect), specificity (i.e., whether the response is
general or specific) and conceptual proximity (i.e., whether
the response object is conceptually exact, close to or far
away from the real object, in terms of the number of shared
attributes). We expect correct-specific (CS) responses to be
more surprising than correct-general (CG) responses, because
people typically do not expect robots to be able to have
human-level recognition capability to describe objects in
minute detail. Likewise, incorrect-wayoff (IW) and incorrect-
nonsense (IN) responses are anticipated to be more surprising
than incorrect-close (IC) responses, in that they are high
contrast and highly improbable responses respectively, thus
potentially leading participants to question how the robot
could have generated such absurd mistakes.

The human operator generated robot responses by follow-
ing a predetermined sequence of correct (C) and incorrect
(I) responses. The sequence was fixed in order to keep
the accuracy rate (∼70%) of the robot consistent across all
sessions, and to eliminate the variability that might arise
from order effects. Our two human operators were trained
to follow the same set of rules for generating responses as
shown in Table I.

IV. Experiment

In the main experiment, we manipulate robot responses
in order to evoke surprise in human users interacting with
Recyclo, and study how this experience of surprise gives rise
to curiosity and affects engagement and trust.

A. Study Design

1) Participants: We recruited 36 university students via
mailing lists and posters. Half of our participants have a
technical education background, i.e., their academic major,
course or research work are related to computer science
and engineering. This balance of technical and non-technical
participants allows us to understand how knowledge about
intelligent machines factors into participants’ expectations of
robot behavior, and hence their experience of surprise during
the interaction. Participants range in age between 18 and 35
years old, and the gender distribution is 56% male and 44%
female.



2) Procedure: Each study session took approximately 1
hour, and participants were paid a $20 honorarium. Upon
arrival, participants were given a brief introduction about
the purpose of the study (i.e., how trust and curiosity shape
human robot interactions) and the procedure on how to
interact with Recyclo. Participants then proceeded to fill
in a pre-study questionnaire, which asked them about their
educational background, experience with recycling and initial
impressions or expectations of Recyclo’s capabilities. They
were given a brief demo, followed by the actual experiment.
After the study, participants rated their overall level of
engagement, surprise, motivation, trust and perception of
reliability in a post-study questionnaire. We also conducted
short interviews with participants, asking them to reflect on
the rationale behind the way they chose objects, the decisions
they made and their experiences of surprise, engagement and
trust throughout the interaction.

We separated participants into two conditions. In the low
surprise (LS) condition, the robot generated predictable
responses, namely CG and IC responses. In the high surprise
(HS) condition, the robot generated unpredictable responses,
namely CS, IW and IN responses, and resorted to CG
responses only if the presented object lacked attributes that
lend themselves to specific description. If participants pre-
sented the same object multiple times, the human operator
gave consistent answers (i.e., the same each time) for the low
surprise condition, and inconsistent answers (i.e., different
each time) for the high surprise condition.

In the training phase of the experiment, participants chose
from a pre-determined set of three objects (namely, a roll of
tape, an empty beverage can and a plastic bottle) to present to
Recyclo. After training, participants could choose objects in
their vicinity or personal items that they brought with them.
This phase of the experiment was unbounded—participants
were told to continue showing objects to Recyclo, so long
as they found the interaction fun and engaging.

To capture how surprise changes during the interaction, we
asked participants to record information using an interaction
form. Specifically, after choosing and before presenting an
object, participants were asked to note down what the object
is, whether they think the object is recyclable (yes, no,
unsure), and whether they think that Recyclo can recognize
the object (yes, no, unsure). After disposing of the object,
participants were asked to record what the robot identified
the object to be, which bin Recyclo recommended versus the
bin they actually used, and to rate on a 7-point scale how
surprised they were about the robot’s responses.

B. Analysis Methods

We used a mixed methods approach, including quantitative
analyses and qualitative summaries of the interviews.

Dependent Variables: These include macro-level effects
(i.e., the overall engagement, motivation, surprise, relia-
bility and trust, as evaluated using the post-study ques-
tionnaire) and interaction-level effects related to surprise
(i.e., per-object-surprise), curiosity (i.e., testing), engagement
(i.e., nb-objects-presented) and trust (i.e., recyclability-trust,

recyclability-compliance), which were measured per object
and may vary over the course of the experiment.

Independent Variables: The only factor we manipulated
experimentally in the low surprise versus high surprise
conditions was the type of response the robot provides for
object recognition (i.e., response-type).

Covariates: We took into account other factors that may
affect the patterns of interaction between participant and
robot; these include user characteristics (i.e., background,
gender), expertise in intelligent systems (i.e., knowledge-
robot, knowledge-AI), recycling experience and knowledge
(i.e., recycling-frequency, recycling-confusion), pre-study ex-
pectations (i.e., prestudy-expectation-recognition, prestudy-
expectation-recyclability), as well as expectations and experi-
ences of violated expectations during the interaction with the
robot (i.e., recognition-expectation, recyclability-expectation,
recognition-violation, recyclability-violation).

To simplify notation for categorical variables, each cate-
gory will be denoted by the name of the variable followed by
the category name; for example, gender-F is used to denote
female participants. Oftentimes, the effects are aggregated
over the number of objects by taking averages (avg), vari-
ances (var) and proportions (prop) to facilitate modelling.
Throughout the paper, we will use the shorthand of the
aggregation method followed by the name of the variable
to denote the aggregated value, for example, avg per-object-
surprise implies the average per-object-surprise.

Statistical Methods: For high-level descriptions of sur-
prise, curiosity, engagement and trust, we used descriptive
statistics (e.g., mean, median) when appropriate. The models
considered were: (1) logistic regression models for modelling
binary response variables, (2) Poisson regression models
for modelling count-type response variables, and (3) pro-
portional odds models for ordinal response variables [21].
We used model averaging [6] to select the best possible
explanatory variables for each model. Since the list of
all possible explanatory variables for each model is short,
exhaustive search of the main effects was done for every
model to identify the variables that have strong relationships
with the corresponding response variable. The goodness of fit
for each model was assessed using the Akaike Information
Criterion [39]. We performed the Wald test to investigate
the significance of the effects for the proportional odds
models, and the t-test for the logistic and Poisson regression
models.1 In all the tables reporting modelling results, β̂ is the
standardized regression coefficient, Std. Error is the standard
error for the estimate of β̂, and t is the coefficient estimate
divided by the standard error, a measure of precision of the
coefficient estimate.

The 36 participants who took part in this study were
evenly and randomly split between the LS and HS conditions.
One participant in the HS condition deviated from procedure
(she presented 3 objects, stopped, then mid-way through
the interview, asked to present more objects to Recyclo);

1Statistically significant results are reported as follows: p < 0.001(***),
p < 0.01(**), p < 0.05(*), p < 0.1(·).



this participant’s responses were removed from the data.
This data cleaning step is done to maintain data integrity;
the removal of one participant did not affect the overall
composition of the two groups.

V. Results

A. Unpredictable Robot Response → Surprise

The first question of interest is whether manipulating
the response types predictably affects the surprise levels of
individual users. While results show that at the macro-level,
there are no significant differences in the general surprise
level (reported in the post-study questionnaire) between
conditions, we found differences when analyzing factors that
influence surprise at the interaction (or per-object) level.

Figure 4 illustrates the distribution of per-object-surprise
by response type. The medians denoted by the lines inside
the boxes, show that the correct-specific (CS) and incorrect-
nonsense (IN) response types elicited higher surprise ratings
than correct-general (CG) and incorrect-close (IC) responses
in general. The incorrect-wayoff (IW) responses had the
lowest surprise ratings. A proportional odds model also
reveals a number of user characteristics that influenced
per-object-surprise. For example, male participants experi-
enced significantly lower surprise than female participants
(χ2(1,N = 35) = 24.03), p < 0.001), while participants with
AI knowledge tended to be more surprised (χ2(1,N = 35) =

8.55), p < 0.01).

Fig. 4. Boxplots of surprise level per-object by response type.

The interview data further confirm these quantitative re-
sults. As expected, correct-specific and incorrect-nonsense
responses were found to be surprising. However, participants
also mentioned that the surprise was in part due to the
juxtaposition of responses with different levels of specificity
and correctness. For instance, the same participant, having
seen that Recyclo can be extremely specific, was surprised
when Recyclo classified a piece of tissue as “tissue” and not
“Kleenex”.

Many participants mentioned being surprised when their
expectations about Recyclo’s abilities were violated. How-
ever, the extent to which they experienced surprise depended
critically on each individual’s unique mental model about
how difficult a particular object is to recognize or sort. One
participant said that a stapler must be easy for the robot
to recognize because of its distinct shape, while another
participant, who has expertise in robotics, considered the
same stapler to be difficult to recognize because it is a
black object placed against a black background. Participants’

TABLE II
linear model for proportion of time participants spent testing the robot.

Model Parameters

Variable β̂ Std. Error t p-value

condition-HS 0.12 0.05 2.27 *
var per-object-surprise 0.07 0.03 2.84 **

certainty (or uncertainty) about an object’s recyclability also
played a role in their experience of surprise. One participant
said “I always think everything is recyclable, and so pretty
much all the answers he gave me corresponded with what I
thought.” Here, the lack of recycling knowledge contributed
to the lack of surprise.

B. Surprise → Curiosity and Information Seeking Behavior

To study whether surprise elicits testing behavior indica-
tive of curiosity, we analyzed two variables—testing (i.e.,
whether a participant exhibited any testing behavior) and
prop testing (i.e., the proportion of the interaction sequence
that participants spent on testing). Here, we define testing
behavior as users presenting the same objects to Recyclo
multiple times. Overall, results show that more HS partici-
pants (65%) exhibited testing behaviour compared to those in
the LS condition (33%), but this difference is not significant
due to large variances, χ2(1,N = 35) = 3.44, p = 0.06.

To investigate what affects the proportion of the interaction
sequence that participants spent on testing (prop testing), we
used a linear regression model. Participants assigned to the
HS condition tested the robot more often than those assigned
to the LS condition, as shown in Table II. Participants also
spent more time on testing when their variance of per-object-
surprise is larger, i.e. when their per-object surprise ratings
span a larger range.

Another indication of testing behavior is when partic-
ipants intentionally choose objects to stump the robot.
Analysis using a linear model shows that the more often
participants failed to guess whether Recyclo can recognize
the object (i.e., prop-recognition-violation), the more often
they selected objects that they do not think Recyclo can
recognize (i.e., recognition-expectation-No and recognition-
expectation-Unsure), β̂ = 1.12, t(33) = 5.08, p < 0.001.

During the interviews, most participants expressed their
desire to test the robot in order to find the system’s limita-
tions and to understand the “thinking” process of the robot.
Participants said that their curiosity was piqued by a single
or a small group of surprising items. These surprises came
in multiple forms: as a specific and correct recognition of
the object (e.g. adidas sporty sneakers), as an incorrect but
amusing recognition (e.g. whiteboard magnet recognized as
a delicious Oreo cookie), or simply as a correct recogni-
tion of an object that the participant didn’t think Recyclo
would be able to handle (e.g. tube-shaped speakers). These
surprises offered the users a glimpse of Recyclo’s supposed
capabilities, and invited further prodding and testing of its



Fig. 5. Engagement and Motivation by condition. The legend indicates
participant responses on the 7-point Likert scale.

knowledge.
As we had found in the pilot study, multiple participants

tested the robot by presenting the same object multiple
times using different angles. However, several participants
went further and constructed new objects. For example, two
participants tested Recyclo’s ability to read various kinds of
text (e.g., french, sheet music). Another participant presented
a take-out paper bag three times, once as is, the second
time crumpled, and the third time with a roll of tape on
top to cover its text. Some participants constructed composite
objects made of two or more items, while others tried several
objects in a similar category, as they were “curious about
the granularity to which Recyclo would be able to detect
objects.” Participants who exhibited such testing behavior
said that they were motivated to understand how the robot
works.

C. Effects on Engagement

At the macro-level, HS participants reported slightly
higher engagement (M = 5.52, Med = 6.00, S D = 1.42)
and motivation (M = 5.65, Med = 6.00, S D = 1.06),
compared to the LS participants’ engagement (M = 5.11,
Med = 6.00, S D = 1.45) and motivation (M = 5.12,
Med = 5.50, S D = 1.29). Figure 5 contains divergent
stacked bar graphs, which center the neutral responses in
the middle. The plot shows that HS participants tended to be
slightly more engaged (as indicated by the slight shift to the
right) than LS participants. However, the differences are not
statistically significant, χ2(1,N = 35) = 0.91, p = 0.34.

Participants in the high surprise condition chose slightly
more objects on average (M = 25.76, S D = 9.20) than
those in the low surprise condition (M = 23.72, S D =

10.72), but the difference is not statistically significant,
t(33) = −0.61, p = 0.55. A Poisson regression model is
used to further investigate factors that influence the num-
ber of objects participants showed to Recyclo. According
to Table III, participants whose expectation of Recyclo’s
recognition ability was violated and who spent more time
testing showed significantly more objects to Recyclo. The
more that participants trust Recyclo, i.e., change their opinion
based on its recommendation, the more objects they showed
Recyclo. Finally, participants who experienced more highs

Fig. 6. Trust and Reliability by condition. The legend indicates participant
responses on the 7-point Likert scale.

and lows (i.e., variance) in their per-object-surprise showed
more objects to Recyclo.

TABLE III
Poisson regression model for the number of presented objects.

Model Parameters

Variable β̂ Std. Error t p-value

var per-object-surprise -0.15 0.05 -3.11 **
prop recognition-violation 0.86 0.38 2.28 *

prop recyclability-trust 0.99 0.50 1.98 *
prop testing 0.73 0.27 2.69 **

During the interviews, many of the LS participants re-
ported that their interest in interacting with Recyclo started
high but decreased over the course of the interaction. On
the other hand, HS participants often remarked that they
became more interested in interacting with the robot when
they encountered the first surprising response from the robot,
since these responses provided new insights into how the
robot thinks, which in turn fueled their quest to “figure out”
the robot.

D. Effects on Trust

Figure 6 shows that at the macro-level, HS participants
perceived Recyclo as less trustworthy (M = 4.47, Med =

5.00, S D = 1.46) compared to LS participants (M = 4.83,
Med = 5.00, S D = 1.25), even though the perception of
Recyclo’s reliability is roughly the same between the HS
(M = 4.41, Med = 5.00, S D = 1.12) and LS (M = 4.67,
Med = 5.00, S D = 1.03) groups. However, these differences
are not statistically significant (t(33) = 0.79, p = 0.44 and
t(33) = 0.70, p = 0.49, respectively). Results also reveal a
high correlation (r(33) = 0.78, p < 0.001) between trust and
reliability—the more participants find the robot reliable, the
more they would trust it to actually recycle trash for them.

Prior studies have shown that trust can be demonstrated
through compliance with the robot’s recommendations [27],
[29]. Here, we evaluated both compliance (participants fol-
lowing Recyclo’s recommendation) as well as a stronger
notion of trust, when participants change their initial opinion
about an object’s recyclability based on Recyclo’s recom-
mendation. As expected, participants were less likely to



comply when they disagree with Recyclo’s recyclability
recommendation (β̂ = −5.72, t(824) = −12.92, p < 0.001). In
terms of trust, the logistic regression model shows that par-
ticipants were significantly less likely to trust Recyclo if they
were in the HS condition (β̂ = −0.69, t(824) = −2.12, p =

0.03) or if they were more surprised on a per-object level
(β̂ = −0.32, t(824) = −3.30, p < 0.001). Participants who
had high technical expertise were less likely to rely on the
robot when its recommendation differed from their own (β̂ =

−1.24, t(824) = −1.98, p = 0.05), a finding also reported in
Gombolay et al. [12]. Finally, participants were more likely
to both comply and trust Recyclo’s recyclability recommen-
dation when the object recognition response was correct
(β̂ = 1.80, t(824) = 4.54, p < 0.001) and when they had
high expectations of the robot’s object recognition capability
prior to the experiment (β̂ = 0.66, t(824) = 3.46, p < 0.001).

These findings are well-aligned with participants’ com-
ments during the interviews. Our interview data reveal that
many participants considered recyclability classification to be
an easier (or even trivial) task compared to object recogni-
tion. In fact, participants tended to believe that if Recyclo can
recognize objects with such impressive accuracy, it must also
be able to determine recyclability correctly. One participant
was unsure whether house keys are recyclable, but upon
seeing that Recyclo was able to classify the object as “a
key chain with two keys”, she accepted Recyclo’s recom-
mendation. Finally, confirming results from our quantitative
analysis that knowledge plays a role in trust, a number of
technical students mentioned during the interviews that they
would not trust the robot that much because they understand
how difficult material recognition and recyclability classifi-
cation is for current AI technology.

VI. Discussion

This work investigates the relationship between surprise,
curiosity, engagement and trust within the context of human-
robot interaction. Our study confirms that surprise can posi-
tively influence the amount of testing behavior, engagement,
and length of interaction. On the flip side, surprise may
negatively influence trust and compliance. Our results also
show that participants differ in terms of what robot responses
they find surprising; this difference can be attributed to
individual characteristics (e.g., gender, technical background
and recycling experience) and expectations.

Interview data reveal that participants engaged in testing
behavior in order to understand how Recyclo works; in the
process, they adaptively infer what Recyclo can and cannot
do. For example, responses that include color, material, or
other tactile information (e.g., squish ball) in the description
made participants think that Recyclo was especially equipped
(e.g., with special sensors) to recognize those attributes.
Participants also made inferences about mistakes and how
they came about. Finally, many of the participants also
inferred that Recyclo had some kind of learning capabilities,
and attributed some of the specific answers to Recyclo
learning from previous interactions.

One way to explain why there was more testing behavior
in the high surprise condition, is that many of the unusu-
ally specific (CS), way off (IW), nonsense (IN) responses
require some creative thinking to explain, compared to the
expected answers (e.g., CG) and forgivable mistakes (e.g.,
IC) found in the low surprise condition. This form of adaptive
inference can be explained in part by psychological theories
of curiosity—the surprising responses create a bigger infor-
mation gap, which participants are compelled to close by
engaging in testing (or information seeking) behavior.

There are several limitations to our study. First, while our
participant pool involves a balance of users with different
levels of technical and recycling expertise, this user popula-
tion is nonetheless homogeneous in terms of age and level
of education. Second, while only one of our participants re-
alized that Recyclo was human operated, several participants
mentioned that they expected a more sophisticated robot, i.e,
one that can move. The violation of this expectation can
negatively affect user engagement. Third, using the number
of objects as a measure of engagement is not perfect, as
there are anchoring effects (e.g., participants wanting to
present just enough objects to fill the page in the interaction
form, or participants continuing to present objects so that
the experimenters would have enough data) and external
factors (e.g., the session starting late, the participant needing
to leave early, or the participant simply being slower in
general at choosing the next object) that affect the actual
number of objects presented. Finally, in this study, we
explored only short-term interactions between users and
Recyclo. As such, novelty effects may be present, and the
session was not long enough for us to observe habituation to
surprise. These limitations point to interesting future work,
involving different user populations (e.g., elderly people), a
more sophisticated robot capable of movement and gestures,
studying longitudinal effects of surprise, as well as the design
of surprising human-robot experiences that take into account
the unique characteristics of each participant.

Finally, results from our study imply that surprise is
not always an appropriate engagement tactic for real-world
human-robot interaction scenarios. Surprising responses from
robots that aim to entertain or educate can be effective in
piquing users’ interest and curiosity. On the other hand, such
unpredictable behavior in task-oriented robots may lead to
unsatisfactory user experience. Future work can explore ways
to mitigate the negative effects of surprise. For example,
users may find surprising responses easier to accept if an
explanation is provided by the robot.

VII. Conclusion

Engagement and trust are important issues in human-robot
interaction. In this paper, we report findings from a Wizard-
of-Oz experiment investigating the relationship between sur-
prise, engagement and trust, as a way to understand the role
that curiosity plays in motivating and sustaining interactions
between humans and robots. Results show that surprise
can result in curiosity and information seeking behavior,
increase engagement and decrease trust. Moreover, individual



characteristics and expectations can modulate the experience
of surprise and its downstream effects.
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