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Abstract— In this work, we designed a teachable robot that
encourages a pair of students to discuss their thoughts and
teaching decisions during the tutoring session. The robot adapts
to the students’ talking activity and adjusts the frequency
and type of encouragement. We hypothesize that the robot’s
encouragement of group discussion can enhance the social
engagement of group members, leading to improved learning
and enjoyment. We ran a user study (n = 68), where a pair of
participants (dyad) worked together to teach a humanoid robot
about rocks and minerals. In the adaptive condition, the robot
uses reinforcement learning to maximise interaction between
the dyad members. Results show that the adaptive robot was
successful in creating more dialogue between dyad members
and in increasing task engagement, but did not affect learning
or enjoyment. Over time, the adaptive robot was also able to
encourage both members to contribute more equally to the
conversation.

I. INTRODUCTION

Robots in education have demonstrated great potential for
improving learning, enabling students to improve their self-
esteem [1], motivation [2], and engagement [3]. While robots
can take a variety of roles [1], teachable robots—robots
that take the role of a novice taught by students—leverage
learning by teaching to further enhance student learning. The
idea is that teaching an agent can induce the so-called Protégé
Effect [4], i.e., students learn better by teaching because of
the increased sense of responsibility [4], [5].

While pedagogical research highlights the importance of
group interaction on students’ learning and overall perfor-
mance in school [6], [7] and the importance of effective
facilitation of small groups to increase communication, self-
motivation and learning [8], many of the research experi-
ments involving teachable robots are based on one-to-one
interactions with the robot [2], [3], [9], [10], [11], [12]. In
order to address this gap, we examine social interactions
and study the effect of social engagement on the learning
experience.

In this work, we developed a teachable agent that dynam-
ically adjusts its behaviour to the communicative activity
of a pair of users. The robot encourages social engagement
by inviting the users to discuss their thoughts and decisions
with their group-mate. The frequency and style of the robot’s
encouragement is decided by a reinforcement learning (RL)
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algorithm based on a reward signal that encourages group
communication, measured from the users’ real-time audio
input. During the interaction, a pair of participants teach
the robot through a tablet web application called Curiosity
Notebook (Figure 1) [13], [14]. The Curiosity Notebook can
be used to teach a variety of taxonomy-style topics, in this
study we used a geology domain and a rock classification
task. The study was initially scheduled to be run in a physical
school setting; however, due to Covid-19 restrictions, the
study was modified to be conducted remotely with 34 pairs
of adult participants. The teaching material was unmodified
as the task of rock classification is unfamiliar to most adults.
We hypothesized that the adaptive robot will increase users’
social engagement, improve their communication, and allow
for equal contribution from each member. Our work is
one of the few studies analyzing social interactions in a
learning context with teachable robots. The robot’s objective
is to encourage within-group human communication. We
performed a user study to assess the effects of adaptive
encouragement on increasing group (social) engagement and
its effects on learning.

II. RELATED WORK

Teachable Social Robots in Education: Robots used in
education can be categorized based on the robot’s role in
the learning process, which could be a tutor, a peer, or a
novice [1]. Teachable robots are novices that allow the users
to take on the teaching role [1] and elicit the protégé effect,
which has been shown to increase students’ effort [4] and
improve learning [15]. Teachable robots can keep students
engaged for longer periods [2], [3] and provide increased
motivation [2].

Adaptive Teachable Robots: Characteristics of the teach-
able robot can be designed to be adaptive [16], [1], [17].
Robots that adapt to the educational level and performance
of the students led to greater learning gains [1], [12] and
task performance [18] in comparison to robots that do not
adapt. Robots with adaptive characteristics (e.g. dynamically
changing voice, knowledge progression, verbal and non-
verbal social behaviour) increase social presence [10], and
learning gains [11].

Lubold et. al. [10] performed a study with a peer robot that
conveyed emotional information with its manner of speaking,
adapting its tone, intensity and speaking rate to that of the
students. Participants had the highest social presence (defined
as the perceptual illusion of non-mediation) when the robot
used both social dialogue and an adaptive voice. However,
there was no significant effect on learning gains.



Baxter et. al. [11] compared a personalized and non-
personalized robot in two different classrooms. The per-
sonalized robot adapted its non-verbal behaviour (gaze and
movement), friendliness (e.g. calling the children by their
name), and progression (responsiveness) to the students. The
students showed significantly increased learning when using
the personalized robot. However, despite the robot being in a
classroom, the robot only supported one-on-one interaction
and the turn-taking was moderated by the teacher.

Group Interaction: Group interactions are rare in studies
of teachable robots in education [19], [20], [21], and such
studies do not tend to discuss the effects of group interaction
on the experiment results. However, outside of educational
HRI research, there have been studies attempting to manipu-
late human team dynamics, performance, and perception of
group cohesion during human-robot interaction [22], [23],
[24], [25], in which the robot is not an active member of the
team, and it is not learning or teaching, rather only providing
hints and comments.

Hood et. al. [21] observed group-mates giving each other
advice while teaching a humanoid robot handwriting. This
collaboration occurred naturally without researchers’ or robot
suggestions. Similar collaboration was seen in our earlier
pilot study [13], where a teachable robot interacted with a
team of students in a fixed turn-taking structure.

Strohkorb et. al. [22] focused on the influence of social
robots on collaboration in the context of children playing a
game in 3 conditions, the robot giving the group task-focused
comments, the robot giving relationally focused comments
and a control condition (no robot). Children in the task-
focused condition performed better than the children in the
two other conditions, while the children in the relational
condition perceived their performance to be higher than the
students in the task-oriented condition.

Short and Mataric [23] used a robot moderator to either
help the group score more points with hints related to playing
the game (performance - reinforcing) or make sure individual
scores are equalized across the group (performance - equal-
izing). Contrary to expectations, participants scored higher
in the performance-equalizing condition while the group
cohesion and interaction were higher in the performance-
reinforcing condition. Participant helpfulness and group co-
hesion were positively correlated with the frequency of robot
mentions of their name. Participants were also more inclined
to take the robot’s advice when it was targeted towards
improving the performance of the whole group.

Micbot [25], a microphone robot used to shape the group
dynamics and team performance in a game context, used
back-channelling or encouraging the least active member to
join the discussion. The results showed that the robot with
encouraging behaviour and matching movements (instead of
random movements or no movements) balanced participa-
tion, and improved group task performance.

Outside of the context of educational robots, adaptability
has been used to increase engagement in group settings.
Meng et al. [26] considered a robotic “Living Architec-
ture System” (LAS) automatically adapting to a group’s

Fig. 1. Curiosity Notebook with Zoom, 1: Robot’s Notes, 2: Repeat Request
3: End Teaching, 4: Online Users, 5: Categories, 6: Example Articles, 7:
Teach Buttons, 8: Check Buttons, 9: Chat Window, 10: Zoom window of
Gamma’s video

preferences in an experiment conducted within a museum
exhibition. The reward for the reinforcement learning (RL)
algorithm was user engagement, which was measured with
ambient sensors. The results of the experiment showed that
the RL-selected robot actions could increase engagement.

In contrast to these prior works, our teachable robot is an
active member of the team (the learner), influences group dy-
namics by encouraging and balancing social engagement and
is personalized to the dyads’ social engagement behaviours
during the course of interaction.

III. SYSTEM OVERVIEW

Our proposed system consists of three main components:
a web application called Curiosity Notebook [13], [14],
which we adapted for this study; an adaptive encouragement
algorithm with audio data as the reward signal; and a NAO
V6 1 Humanoid robot, connected to the Curiosity Notebook.

A. Curiosity Notebook

The Curiosity Notebook enables users to read articles
on various topics, structured as taxonomies, and teach the
robot about them. Figure 1 shows the Curiosity Notebook
interface during the task of rock classification. The users
start the conversation by clicking the interactive buttons of
their choice. There are two categories of buttons to interact
with the robot: the teaching buttons and the checking buttons.
Amongst the teaching buttons, users can choose the describe
button to teach the agent about an object’s features, the
explain button to explain the feature and the compare button
to discuss similarities or differences between rocks. If the
user clicks any of the three teaching buttons, the user is
asked to choose a rock, then the robot guides the interaction
by asking different types of questions about the features of
the chosen rock. If the user clicks the compare button, the
robot picks a second rock after the user provided the name of
the chosen rock. The conversations initiated by each button
are associated with a state machine (an example is shown
in Figure 2). No other interactive buttons can be clicked

1https://www.softbankrobotics.com/emea/en/nao



Fig. 2. The state machine that is executed after the Describe Button
is clicked. 1) Request Entity: the robot will ask for the user to pick an
object, 2) Entity Dialog: reflection on what the robot already knows about
the selected object, 3) Pose Category Question: what category does the
selected object belong to, 4) Category Dialog: robot reflecting on the new
knowledge, 5) Select Sentence: robot asking for a sentence that describes
one of the features of the rock, 6) Sentence Dialog: reflect on the sentence,
7) Communicate Internal State: robot communicating excitement about
learning.

until the state machine for the current button has reached
the termination state. The checking buttons are for testing
the robot’s learning. The users can choose to either quiz
the robot by asking it to categorize an object or correct a
previously learned concept in the robot’s notes. The users
can read and move between the categories and articles of
each category at any time.

There are also three special-function buttons. Unlike the
interactive buttons, the special-function buttons are all single
action with no states and can be clicked at any time. The first
button is the Robot’s Notes button. Clicking on the Robot’s
Notes button brings up a notebook containing notes of all
the knowledge that the robot has learned so far. The Repeat
button can be used by users in case they misheard or did not
hear the robot. The End Teaching button allows the users to
indicate that they have finished the teaching process. Users
can choose to stop teaching at any time.

The Curiosity Notebook supports group or one-on-one
interaction. In our work, the group mode was used, in which
case the Curiosity Notebook uses automated turn-taking to
facilitate group interactions. In the turn-taking mechanism,
one user will be the active teacher; only the active teacher
can chat with the robot. The second user can click on
different articles or use any of the special-function buttons.
The turn-taking was shown to be effective in moderating the
conversation during our initial pilot [13], otherwise, the user
clicking the button faster would always be the active teacher,
leaving some users discouraged to contribute at all. Turn-
taking gave everyone an opportunity to contribute equally
to the learning process, independent of their level of social
engagement with their team. The Curiosity Notebook can
be used on its own or connected to a physical robot. For
our study, we used the Curiosity Notebook with a humanoid
robot. The connection to the robot is described in section III-
C.

B. User Audio Input

During the remote experiments, the voice activity was
coded manually in real-time as we couldn’t develop a reliable
Zoom audio speaker diarization technique. The WebRTC2

Voice Activity Detection (VAD) algorithm was used to
capture the duration of voice activity for data analysis after
the experiment.

C. The Humanoid Robot

The robot connects to the Curiosity Notebook via a Post-
gres database provisioned on the Heroku platform, such that
each robot utterance is sent to the database and then to the
robot. In addition to the text of the dialogue, each sentence is
coded with an emotion: happy, sad, neutral, bored or curious.
Most of the robot’s sentences are neutral. The emotion code
is happy if the robot just learned something (e.g., “I love
learning about rocks”). Sentences are coded as sad if the
robot makes a mistake during the quiz. The emotion is
curious with a 50% probability if the robot is asking a
question, and a sentence is coded bored if the notebook was
idle for more than 2.5 minutes, in which case the robot asks
participants to continue teaching. The emotion coding was
also used to select the appropriate movement for the robot.
The majority of the motions were predefined in naoqi, the
operating system of NAO V6 robot, with a few additional nod
motions, developed manually by joint manipulation for the
neutral category. The movements are summarized in Table II.
The utterances are spoken out by the robot while it is acting
as per the corresponding movement.

IV. ADAPTIVE ENCOURAGEMENT

Our goal is to increase group/social engagement between
the team members using RL, hence, we modified the robot to
deliver encouraging statements during the teaching conver-
sation, specifically, after posing a question to the user and
waiting for their answer. The states where encouragement
could be provided are highlighted in Figure 2 in yellow. To
create an adaptive encouraging system, we use a Q-Learning
algorithm [27] to selectively choose if and how to encourage
social engagement based on the users’ talking activity. The
reinforcement learning framework is defined as follows:

1) States: At each time step, the interaction can be in
one of four states: a) there is not enough conversation,
b) user A is dominating the conversation c) user B is
dominating the conversation d) both users are equally
and fully contributing.

2) Actions: There are five possible actions: encourage the
active user, encourage the inactive user, encourage both
users, pick a non-encouraging sentence, or say nothing.

3) Rewards: A weighted sum of the total time spent
talking and the ratio of talking time of two users. The
total reward is calculated as shown (4).

2To read more on the Open Source WebRTC project please visit https:
//webrtc.org/

https://webrtc.org/
https://webrtc.org/


TABLE I
ENCOURAGING SENTENCES

Encouragement Type Sentence

encourage active user “Make sure you let your partner know what you are thinking.”
“Try to explain your answer to your partner before telling me”.

encourage other user “Why don’t you ask if your partner agrees with you?”
“Why don’t you ask what your partner thinks?”

encourage-both

“Why don’t you two discuss this?”
“Can you two talk amongst yourselves first?”
“Let’s do this together team!”
“You can discuss it together first.”
“We can discuss it as a team!”
“Do you want to discuss if you both agree?”

A. Q-Learning Reward Calculation

To calculate the reward of the Q-Learning at each step,
the algorithm reads the voice activity duration of both users
(spk1, spk2) since the last reward calculation. The reward
has two parts. The first part rewards more talking between
both users (rtalk), which is calculated using the ratio of the
total duration that both users spoke (ttalking) and the total
time spent interacting with the robot (ttotal). The second
part rewards the ratio of how much the first user talks to
how much the second user talks (rratio). Both parts of the
reward (2) and (3) are calculated as their distance from the
ideal value of 1 (i.e., the users spoke the full duration of the
experiment and they spoke equally). The total is calculated
by summing the two partial rewards and combining them as
a cost (coverall) by negation (4).

ratio =
spk1
spk2

and ttalking = spk1 + spk2 (1)

rtalk = (1− ttalking
ttotal

)2 (2)

rratio =

(1− ratio)2, if ratio ≤ 1

(1− 1

ratio
)2, otherwise

(3)

ctotal = −(rtalk + rratio) (4)

B. Encouraging Statements

There are three different types of encouraging statements,
in addition to baseline non-encouraging statements, sum-
marized in Table I. The active user is selected by the
turn-taking mechanism. The robot utterances were created
following techniques used in classrooms by teachers to pro-
mote user class participation [28] and encourage cooperative
learning and group discussions in class [29]. Some utterances
were targeted to individual users by calling their name to
specifically engage them [30], or to ask them to engage their
partner, while others were aimed at the group as a whole [31].

C. Q-Learning Parameters

The learning rate of Q-Learning (λ) controls how fast
the algorithm adapts and was set to 0.6 for this experi-
ment based on simulation results. Simulations were done
assuming a simple deterministic dyad model as the reward
signal for Q-Learning. In this model, every encouragement
increases communication by 30 seconds (plus noise). The

TABLE II
ROBOT’S MOVEMENTS

Emotion Sample Movements
sad scared, frustrated, hurt, sad, crying, getting shy, looking down
happy laughs, giggles, clapping sounds, excited noises e.g. “Yoohoo”

neutral hands and head movements while talking, sneezing,
eye contact and turning its head to indicate listening

curious recalling and thinking motions, e.g. scratching its head,
putting hand under the chin.

values of the discount rate (γ) and exploration rate (ε) were
also selected based on simulation results. The value of the
discount rate controls how much current audio input matters
versus how much the next audio inputs will matter, set
to 0.2. The exploration rate is the probability ε by which
the algorithm disregards its Q function values and picks a
random action, chosen to be 0.5 in our study. While the
Q-Learning algorithm was tested in simulation to determine
the hyperparameters, the algorithm was not trained before
the user study and the only training data used were the data
collected during the user study from the participants.

D. Research Questions

Our first hypothesis (H1) is that the robot encouraging
teamwork will increase users’ social engagement during the
study, therefore increasing their communication. The second
hypothesis (H2) is that the adaptive robot will have greater
effects on (H2a) task engagement, (H2b) enjoyment and
(H2c) learning in comparison to the baseline robot. Our third
hypothesis (H3) is that adaptively encouraging teamwork
will ensure both users contribute to the conversation more
equally, without one user dominating the conversation.

V. EXPERIMENT

The goal of the experiment is to study the effect of adap-
tive encouragement on social engagement, task engagement,
enjoyment and learning. Our user studies are done in dyads
of participants. The curiosity of the robot, its learning speed,
emotions and the questions it asked were kept constant across
all the studies. The experiments were carried out in two
conditions, baseline or adaptive. In the baseline condition,
the robot does not encourage teamwork. In the adaptive
condition, the robot encourages teamwork based on the audio
input from the users. In the baseline condition, the robot uses
neutral statements (e.g. ”I don’t know yet, I look forward to
your answer“) instead of the encouraging statements (Table I)
to keep the length and the frequency of the robot’s dialogues
consistent across both conditions.

A. Participants

The user study was reviewed and received ethics clear-
ance through the University of Waterloo Research Ethics
Committee (ORE#40392). The participants were recruited
through emails from the University of Waterloo and the
social networks of the researchers. They were asked to sign
up for a time slot, so they were randomly matched with other
participants that signed up for the same time slot, except for
three pairs who knew each other and chose to sign up for



TABLE III
DYAD-WISE DEMOGRAPHICS AND MEASUREMENTS

Adaptive
(n = 15)

Baseline
(n = 13) p-value

gender combinations MM=2, FF=5 Mix = 8 MM=2, FF=4 Mix = 7 χ2 ≈ 0.14 p=0.98
age difference (years) 4.13(±3.38) 3.46(±3.13) t = 0.54, p= 0.6
dyad age sum (years) 51.47(±4.6) 52.23(±5.33) t = -0.40, p = 0.69
started speaking English 11.8(±9.21) 12.92(±10.2) t=-0.31 p=0.76
self-declared prior domain knowledge 4.27, SD=1.22 6, SD=2 t=-2.81, p=0.01

the same time slot. After signing up, the participants received
instructions to join a Zoom call. A total of 68 participants
were recruited for this study, forming 34 dyads. However,
two dyads were excluded from analysis due to system lags
and errors, whereas two more dyads were excluded due
to one of the participants arriving significantly later than
the scheduled time. Two more dyads were excluded after
analyzing the data for technical issues and missing data. Of
the remaining dyads, 15 dyads were assigned to the adaptive-
encouraging condition, and 13 dyads were assigned to the
baseline (non-encouraging) condition. The participants were
all adults between the ages of 20 to 35. Table III summarizes
the dyad-wise demographics.

B. Procedure

On the scheduled date and time, Gamma (the humanoid
robot) and the researcher were both in the Zoom call
(Figure 3) waiting for the participants. The experimental
condition was assigned beforehand, and the participants were
not aware of the condition assigned. Participants were given
their login credentials for the Curiosity Notebook after they
joined the call. All usernames were the preferred first name
of the participants and it was the name Gamma used to
address them. Upon logging in, they had to sign the consent
form, after which they proceeded to fill in the pre-study
surveys (described in the next section V-C Measures). After
the pre-study survey, the participants watched a three-minute
instruction video, in which they learned about the Curiosity
Notebook buttons and how to teach Gamma. After the video,
participants arrived at the teaching interface, they were asked
to wait for their partners to also finish all the previous steps.
Before they started teaching, they were offered the chance
to ask clarification questions from the researcher, as no
questions would be answered during the teaching period. The
participants’ audio was recorded throughout the experiment.
The duration of the experiment was up to the participants and
varied between 25 minutes and 69 minutes. After deciding
to stop teaching Gamma, the participants were taken to the
post-study questionnaires.

C. Measures

The pre-study surveys included demographics, familiarity
and interest in robots, conversational agents and the topic of
rock classification. They also included questions regarding
the participant’s interest in group work, and whether they
knew their co-participant (group familiarity). The group
familiarity survey was designed to measure some of the
group characteristics that influence group work [32], [33].
In this study, the task was identical for all the participants,

Fig. 3. Zoom Call Interface, with two participants and Gamma

with no roles assigned, and no participants having prior
experience with the system, therefore the focus was on group
familiarity. We asked about the participants’ familiarity with
their co-participants in the study, both at an in-class and
outside-class interaction level (of the three dyads who have
known each other prior to the study, 2 were assigned to
the baseline condition, and 1 to the adaptive condition), and
their interest in group work, both measured on a 4-point
Likert scale. Participants also answered a questionnaire on
their feelings towards, and perceptions of Gamma (Godspeed
Questionnaire [34]), in addition to their mood (Pick-A-
Mood survey [35]). The last pre-study questionnaire was a
knowledge test on rocks.

Post-study surveys included a questionnaire on the partic-
ipants’ experience. The participants answered questions on
how much they enjoyed their experience, their interest in
participating again, learning more about the topic they taught,
and how much they enjoyed working with their partner. They
were asked if they thought the robot was giving both of
the participants a fair chance and encouraging group work.
Other post-study surveys include another questionnaire on
participants’ perceptions of Gamma, another knowledge test,
their motivation behind task completion (Intrinsic Motivation
Inventory (IMI) [36] and Types of Motivation [37]).

VI. RESULTS

Talking Duration: As the participants decided when to end
the experiment themselves, talking time is normalised by the
experiment’s overall duration. Figure 4 shows the normalised
talking time for both conditions. The normalised talking time
was significantly larger for dyads in the adaptive condition,
confirming H1 (t(26) = 2.24, p = 0.03). There was
no statistically significant difference in overall experiment
duration between the two conditions (Madapt = 2539(s),
SD = 511.8, Mbase = 2684.39(s), SD = 622.69,
t(26) = − 0.66, p = 0.51).

The ratio of talking time to total time also depended on
the gender (highest when both dyad members identified as
female β = 0.13, t(17) = 2.46, p = 0.03), and the dyad’s
interest in conversational agents (β = 0.03, t(17) = 2.2,
p = 0.04).

Talking Trend: To analyze the effect of encouragement
over time, we compared the trends of talking time between
two conditions, shown in Figure 5. The adaptive condition
results in higher talking time on average for the duration, but
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the trend is downward for both conditions and the slopes are
not significantly different (Madapt = −0.81,SD = 0.75 and
Mbase = −0.72,SD = 1.27, t(26) = −0.23, p = 0.82).
Qualitatively, the initial conversations were mostly questions
on how the system works or wondering about the function-
ality of different buttons, regardless of the condition. Those
types of conversations faded as the participants learned how
to use the system.

Relative Participation: We hypothesized that the adaptive
condition would result in a more equal division of speaking
between participants (H3). To investigate our hypothesis, we
define the speaking percentage of each user at any given
period by the ratio of their speaking activity duration to
the overall speaking activity in that period. The ideal value
of speaking percentage is 50%. Figure 6 illustrates how
much the speaking percentage of one participant (in each
dyad) deviates from 50% (calculated in (5)), where a lower
deviation indicates a more equal contribution. As shown in
Figure 6, the average percentage difference is higher in the
adaptive condition at the start, but it moves toward 0. In
the baseline condition, however, the difference starts at a
more desirable value but remains nearly constant, showing
that the robot does not influence the balance between the
two participants in the baseline condition. In the adaptive
condition the slope is M = −0.13, SD = 0.25 while in
the baseline condition slope is M = −0.002, SD = 0.17.
The difference in slope is not statistically significant with
t(26) = −1.55, p = 0.13.
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Fig. 6. Distance (5) of Participants’ Speaking Percentage from 50%

Other Effects of the Experimental Condition: Task en-
gagement, defined as the number of interactions participants
had with the Curiosity Notebook, was higher in the adap-
tive condition. The number of buttons participants clicked
(F (1, 20) = 4.79, p = 0.04), how many times they taught
something (F (1, 26) = 3.09, p = 0.06), and how many
articles they clicked (F (1, 25) = 8.15, p = 0.01) were all
greater in the adaptive condition. The number of articles
clicked was also correlated to participants’ self-declared
desire to teach (F (1, 25) = 6.29, p = 0.02).

To compare learning gains, we have to consider that de-
spite the random assignment, the participants in the baseline
condition self-reported higher knowledge about rocks (refer
to Table III), although the pre-study knowledge test scores
were not significantly higher for the dyads in the baseline
condition. To evaluate if there was any learning gain, we
compared the score improvement (post-score - pre-score).
The difference in learning gain between conditions was not
significant (Madapt = 1.74, SD = 3.47 , Mbase = 2.38,
SD = 2.53 , t(23) = −0.56, p = 0.58). The improvement
in the score was highly and negatively correlated with the
pre-study test score(β = −0.76, t(23) = −6.29, p = 0),
which means the participants with less knowledge showed
higher learning gains. Secondly, as expected, the improve-
ment was positively correlated with participants’ interest
in rocks (β = 0.37, t(23) = 2.62, p = 0.02). There
was a weaker negative correlation between how much the
participants thought they knew about rocks and their score
improvement (β = −0.4, t(23) = − 1.71, p = 0.1).
Regardless of condition, the average knowledge test score
improved after the study by 1 point (out of 6).

Examining our second hypothesis (H2b) on increased dyad
enjoyment (how much the participants enjoyed working with
their partner), we report no significant difference between the
conditions.

Participant perceptions of the robot: From the post-study
Godspeed questionnaire, one characteristic of the robot dif-
fered significantly between the two conditions. The partici-
pants in the adaptive condition found Gamma less pleasant
(sum of the dyad’s perception on a 5-point scale), and this is
affected by both the experimental condition and their interest
in rocks (Madapt = 7.47, SD = 1.36 and Mbase = 8.46,
SD = 0.88, p = 0.03).

From the post-study experience survey (section V-C), most



participants in both conditions considered the robot to be
fair, in the baseline condition this was due to the turn-taking
mechanism, and how the robot gave both participants their
turns (Madapt = 1.93, SD = 0.26 and Mbase = 1.58,
SD = 0.79, t(25) = 3.13, p = 0.11). In the adaptive
condition, prompts for discussion among dyad members were
considered a sign of fairness in 8 instances. In the baseline
condition, 5 participants thought the robot was not fair, 2 of
which were due to the robot interrupting them. Turn-taking
and instance of the robot talking over participants are some
of the current challenges of human-robot-collaboration and
many of the cues used in face-to-face interaction were not
applicable in the virtual setting of our experiment [38].

When it comes to participants’ perception of whether
the robot was encouraging team work, the participants in
the adaptive condition found the robot more encouraging
(Madapt = 1.93 ,SD = 0.28 and Mbase = 1.33, SD = 0.65,
t(24) = 3.13, p = 0.004). Participants in the baseline
condition interpreted forced turn-taking as encouragement
of teamwork in 6 instances, while others cited unrelated
reasons, such as the experiment being fun, or the need to
figure out how the system works initially.

The majority (37) of participants in both conditions en-
joyed their teaching experience (Madapt = 2.9, SD = 0.9
and Mbase = 2.8, SD = 1, on a 4 point Likert scale). In
both conditions, the most frequently mentioned reason for
enjoyment was that it was an “exciting experience”. Some
characteristics of voice and appearance of the humanoid
robot (Gamma) were mentioned by the participants, such
as “enthusiastic robot”, “fun movements”, “sense of won-
der in Gamma’s face”, in addition to some non-physical
characteristics such as “good notes” and “fast learner”. In
both conditions, “slow” and “repetitive prompts” were the
most common reason behind participants’ dissatisfaction.
The results from Pick-A-Mood scale [35] show that 20%
of participants in the adaptive condition felt tense before
the experiment, which dropped to 10% after the experiment.
However, in the baseline condition feeling tense increased
from 8% before the experiment to 19% afterward. Feeling
excited went from 0% to 33% in the adaptive condition and
8 to 23% in the baseline condition. Lastly, more participants
in the adaptive condition thought Gamma was excited (83%)
in comparison to the baseline (53%).

There is little difference between the two conditions in
terms of the participants’ perception of their teaching level,
or whether they thought of Gamma as a good student.
The encouragement of collaboration was mentioned as a
characteristic by one participant in the adaptive condition. A
participant in the baseline condition called the robot socially
unaware and “as if there were no humans in the interaction”.

In participants’ general feedback, recurring requests were
to make the interaction faster, make the Curiosity Notebook
easier to interact with, and allow participants more freedom
or give them more options. Feedback related to changes in
the robot were similar in both conditions, mostly to tone
down the excitement, especially laughing. There were also
a few reports of Gamma being hard to hear over the call or

the voice getting interrupted.
Participant Discussion During the Study: The audio tran-

scriptions of the conversations between the participants
recorded during the study were coded using 10 different
categories: teaching plans - long term, teaching plans - im-
mediate, questions about interface, discussion about articles,
comments on Gamma, comments on teaching, comments
on learning, unrelated conversation, unanswered initiation,
and conversation about when to end the teaching session.
Based on this coding, dyads in the adaptive condition had
significantly more discussions compared to those in the
baseline condition (Madapt = 56.64 ,SD = 29.79 and
Mbase = 24.92, SD = 15.43, t(24) = 3.32, p = 0.003).
This result differs from the length of the conversation as the
discussions were coded irrelevant of the length but based on
the change of topic or in case the robot gave a new prompt.
The disparity between the number of discussions initiated by
each participant was higher in the adaptive condition however
this difference was not significant.

Considering the topic of discussion, short-term plans for
teaching can happen at every step and included letting the
other participant know of the chosen rock or sentence or
the immediate next action. Encouragements by the robot
were successful in causing the participants in the adaptive
condition to discuss their next action with their teammate at
a significantly higher level (Madapt = 26.43 ,SD = 15.95
and Mbase = 4.42, SD = 4.03, t(24) = 4.64, p = 0).
The number of discussions on overall plans was higher
in the adaptive dyads as well however this difference was
not significantly different. The participants in the adaptive
condition were more likely to comment on the teaching of
their teammates or proactively offer help and suggestion
Madapt = 3.36 ,SD = 2.53 and Mbase = 1.33, SD = 1.87,
t(24) = 2.82, p = 0.03).

In every other category of discussions, the dyads in
the adaptive condition had more discussions, however, the
difference was not statistically significant.

VII. DISCUSSION

Our study showed that encouraging group/social engage-
ment increased communication as well as participants’ task
engagement and exploration. The results also show the
potential for an adaptive encouraging robot to create more
balanced participation between the dyad members. However,
we were not able to show any effect of increased communi-
cation on learning outcomes in this short intervention.

Limitations: One of the limitations of this study was that
participants’ group engagement was only measured through
their verbal communication and did not include factors such
as emotions and non-verbal behaviours. Additionally, the
robot’s action repertoire could be expanded by including
other forms of encouragement such as eye contact, or other
verbal behaviours such as back-channeling [25]. Performing
a long-term study will allow for the measurement of learning
gains and long-term engagement [1], [3]. The suitability of
the system for the tested age-group also needs to be further
validated. This system may be more or less suitable for



different age groups. furthermore, our study was performed
remotely, introducing the possibility of delays and poor
audio/video quality that could have affected the engagement
negatively. The results might differ for an in-person study.
However, the remote study results could be relevant for future
studies, given the emergence of online learning platforms.

VIII. CONCLUSIONS

This paper proposed adaptive social robots to increase
communication within groups in the context of robot teach-
ing. We performed a user study to examine the effect
of adaptive encouragement on social engagement, task en-
gagement, enjoyment and learning. Robot encouragement
increased team communication, leading to higher social
engagement in addition to higher task engagement. Encour-
aging social/group interactions with an adaptive robot might
have the potential for improving learning gains in long-term
interactions, which should be investigated in future work.

Further experiments are also needed to investigate the ben-
efit of adaptive over non-adaptive (random) encouragement.
Additionally, the participant pool should be carefully selected
to prevent the topic knowledge gap observed between par-
ticipants in the two conditions of our study.
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