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Figure 1: (a) We measured physiological signals (heart rate, eye-movement entropy, galvanic skin response) and self-
reported comfort and anxiety from passengers in an autonomous vehicle. (b) We correlated passenger data with driving
style parameters, including acceleration, jerk, and dynamic object distance, as well as four events: following a lead vehicle,
stopping at a sign, passing a vehicle, and a tight turn. (c) This study took place on a closed track in an autonomous vehicle.

ABSTRACT
Autonomous vehicles have been rapidly progressing towards
full autonomy using fixed driving styles, which may differ
from individual passenger preferences. Violating these prefer-
ences may lead to passenger discomfort or anxiety. We studied
passenger responses to different driving style parameters in
a physical autonomous vehicle. We collected galvanic skin
response, heart rate, and eye-movement patterns from 20 par-
ticipants, along with self-reported comfort and anxiety scores.
Our results show that the presence and proximity of a lead
vehicle not only raised the level of all measured physiological
responses, but also exaggerated the existing effect of the lon-
gitudinal acceleration and jerk parameters. Skin response was
also found to be a significant predictor of passenger comfort
and anxiety. By using multiple independent events to isolate
different driving style parameters, we demonstrate a method
to control and analyze such parameters in future studies.

*Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: 10.1145/3313831.3376247

Author Keywords
autonomous vehicles, passengers, driving style, physiological
sensing, comfort, affective computing, empirical study

CCS Concepts
•Human-centered computing→ Interaction techniques;

INTRODUCTION
Despite significant and rapid technological advancements, au-
tonomous vehicles (AVs) face a crisis of trust. Vehicles are
quickly progressing towards SAE autonomy level 4, in which
manual driving intervention is unnecessary within the opera-
tional design domain [12]. These fully-autonomous vehicles
could lead to safer, faster, and more accessible transportation
[30, 13]. Yet, people are hesitant to ride in them: according to
a 2019 AAA survey, 60–80% of drivers interviewed expressed
their reluctance to ride in a fully AV [16]. For passengers,
trust, safety, and control issues are likely the underlying con-
cerns behind their reluctance to ride in these vehicles [38].
Promoting a sense of comfort in passengers may be the next
crucial challenge for autonomous driving.

One opportunity to promote a sense of comfort is by adapting
the vehicle’s driving style, the set of driving parameters that
determine, for example, how quickly the vehicle accelerates
or how closely it follows another vehicle [5]. Driving styles
can either be fixed or adaptive. Currently, fixed driving styles
are presets that target physical safety and not comfort; a fixed
style also fails to account for how passengers may have varying

10.1145/3313831.3376247


individual preferences towards driving styles [5]. Efforts to
develop adaptive styles may use techniques like learning a
driving style from user demonstration [28], but these do not
directly target passenger comfort: passenger preferences may
be a direct consequence of their perceived driving style, which
might significantly differ from that which they employ in
practice [5].

Researchers who have studied passenger reactions have typ-
ically conducted studies using simulators [6, 7, 26, 40] or
Wizard-of-Oz studies [17, 53]. While these have yielded
useful insights for other factors, they lack external validity
for realistic motion with an AV. Passenger studies in physical
AVs have looked at related topics like lane-changing behav-
ior [18], self-reported trust in a controlled lab setting [37], or
physiological measures of trust in a naturalistic setting [34].

In our work, we bridge the gap between lab and naturalistic
studies and between self-report and physiological measures.
We 1) connect passenger reactions of anxiety and comfort to
physiological signals, 2) manipulate driving style parameters
in a controlled study on a closed track, and 3) extend analysis
to events, providing insight for adaptive driving styles. The
closest study in this space is Mühl et al. [34], who studied over-
all trust rather than comfort and anxiety, in a less controlled
setting (traffic). They did not, however, find a significant
correlation between trust and the physiological device they
employed.

Specifically, we collected physiological sensor data, such
as galvanic skin response (GSR), heart rate (HR), and eye-
movement patterns from 20 participants, along with self-
reported comfort and anxiety scores on a 10-point Likert scale.
We varied driving style parameters across four trials, each
including four events: stopping behind another vehicle, pass-
ing a stationary vehicle, stopping at a stop sign, and taking
a sharp turn. We isolated the individual parameters (lateral
and longitudinal components of acceleration and distance to
an agent vehicle) as much as realistically possible, because of
the unavoidable confounds that occur as a result of naturalistic
driving (for example, slight lateral translations or wavering
may still occur on straight road driving); our methods can
inform future in-vehicle studies.

We contribute: 1) evidence that the magnitude of certain physi-
ological responses (e.g., GSR and HR) is significantly affected
by driving parameters such as acceleration and jerk—more so
in the presence and proximity of a lead vehicle; 2) insight into
how driving conditions affect passengers; events involving
a stop—particularly behind a lead vehicle—led to a higher
level of response independent of driving style parameters. 3)
In addition—because GSR was found to be a significant pre-
dictor of self-reported passenger comfort and anxiety—we
are able to use our analysis results to understand the effect of
driving style parameters on not just the physiological response,
but also on the perceived comfort and anxiety itself. 4) Finally,
we have released our generated dataset on an open source
platform1.

1Data hosted on dataverse: https://doi.org/10.5683/SP2/FJXBRX

RELATED WORK
We discuss prior work on physiological responses to stress
in various contexts and position our work in the context of
state-of-the-art passenger-vehicle interaction research.

Measuring physiological response to stress
Our work aims to understand the effect of autonomous driv-
ing style on the comfort and anxiety level of passengers in
AVs. Specifically, we study state anxiety, defined by Spiel-
berger [47] as a complex emotional response to a perceived
threat, characterized by “feelings of tension and heightened
autonomic nervous system activity.” This leads us to investi-
gate the physiological response of the passenger by measuring
autonomous nervous system variables such as GSR, HR and
heart rate variability (HRV), as well as eye movement patterns.

GSR
Commonly used GSR variables include the electrodermal ac-
tivity (EDA) or skin conductance level (SCL), a slowly chang-
ing measure of tonic physiological activity, and skin conduc-
tance response (SCR), quick bursts of elevated conductance
levels resembling peaks. Increased sweat production in the
eccrine glands, which is the primary basis for SCL, indicates
psychological arousal [32].

In the context of driving, Mühl et al. used SCL to measure
passenger trust [34] in an AV, while Alpers et al. [3] found
significant effect sizes in SCL among driving-phobic partici-
pants before, during, as well as after their exposure to anxiety-
inducing, manual driving tasks. Elevations in SCL were also
noticed among the non-phobic participants albeit at a lower
level.

In a study by Blechert et al. [9], the largest effect sizes in
relation to anxiety were demonstrated by electrodermal mea-
sures which included both SCL and SCR variables. Liu et al.
[31] also found a positive association between SCR rate and
amplitude and anxiety.

HR and HRV
Zheng et al. [55] investigated the use of a photoplethysmo-
gram (PPG, a method of measuring cardiac activity) features
to predict anxiety and found that the mean pulse rate could
be a potential marker for anxiety. HR was similarly used by
Katcher, Segal, and Beck [25] to indicate the onset of dis-
comfort and anxiety in patients undergoing dental surgery.
Taelman et al. [49] linked mental stress to an increase in the
mean heart beat period and HRV, while an elevated heart was
also found to be a consequence of discomfort (in relation to
environmental noise) in a study conducted by Baker [4].

With frequency domain analysis of HRV, the low frequency
(LF) component is generally found to be higher in a state
of anxiety as compared to baseline conditions [36]. Rani et
al. [41] exploited this phenomenon (with other physiological
responses) to produce an index for measuring people’s anxiety
level when interacting with a robot. Meanwhile, Liu et al. [31]
used the LF, along with the peak PPG amplitude and the mean
and standard deviation of the interbeat interval, to train a
classifier to dynamically adjust difficulty in video games.
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Eye tracking
Eye tracking research is primarily based on fixations: clusters
of gaze points that occur in quick succession, typically within
100-300 milliseconds, with a small spatial range [14]. Anxiety
has been linked to eye movement patterns; in particular, loss
of focus on the areas of interest seems to be a trend among
individuals experiencing stress or anxiety. In the context of
driving, vision-based gaze estimation has been used for driver
monitoring to predict driver state and behaviour, such as driver
fatigue and failure to signal [19, 29].

In the context of attention and performance during penalty
kicks, Wilson et al. [51] found that players made significantly
more fixations towards target areas in situations involving high
threat but spent far more time focusing on the goal-keeper in-
stead of the goal-target area, resulting in sub-optimal shooting
strategies. Similarly, Causer et al. [10] showed that high anxi-
ety caused competitive shotgun shooters to experience higher
levels of distraction as evidenced by the decreased duration of
final goal-oriented fixations. This was further corroborated by
Allsop et al. [2], who found that anxiety increased scanning
entropy—the randomness in scan behaviour—in the presence
of cognitive load. In addition, they found that high anxiety
significantly decreased the dwell time on the area of interest,
while increasing it on irrelevant regions.

Positioning this work in the context of related studies
Existing studies on passenger-vehicle interaction for AVs can
be grouped into three broad categories: physical AV studies,
simulator studies, and Wizard-of-Oz studies.

Several on-road studies have been conducted inside physi-
cal AVs [18, 34], each of which differ from our research
in one or more ways. Unlike our study, which was run en-
tirely in a physical, autonomously driven vehicle and in a con-
trolled real-world environment, Mühl et al. [34] conducted
the field study portion of their experiment in an uncontrolled
traffic environment and only investigated driving styles in a
simulator. Festner et al. [18], meanwhile, studied only lane-
changing behavior and did not measure physiological signals.
Our work used a wide range of physiological signals to study
comfort (and anxiety) complementing Mühl et al.’s focus on
trust. Jaguar has also investigated physiological sensing for
motion sickness in their vehicles, but did not study the effect
of driving style on overall comfort and anxiety [45]. Besides
these on-road studies, Oliveira et al. also conducted research
inside a physical AV but did so in a controlled lab environment
and relied only on self-reported scores and interviews [37].

Simulator studies, while highly controlled, are less ecologi-
cally valid [35] as they generally fail to account for realis-
tic physical forces and motion components and provide an
unavoidable safety bias. To avoid simulator sickness, these
studies are also limited to mostly straight road driving and
do not study turn-taking maneuvers. Most related works on
passenger-vehicle interaction have been conducted in simula-
tors and either study physiological response [6, 7, 26, 40] or
do not measure them at all [5, 8, 21, 42, 43]. Kia did inves-
tigate physiological sensing in a prototype vehicle but their
work focused on adaptive vehicle interiors as opposed to driv-
ing style [15]. Other simulator studies tend to focus mainly

on investigating take-over requests for safety drivers [23, 46,
50, 52].

The remaining Wizard-of-Oz studies were conducted with man-
ually driven vehicles to study passenger [17, 53] and pedes-
trian [44] responses but lack in providing the full experience
of autonomous driving to participants (e.g., automatic actu-
ation of the steering wheel). In addition, these studies do
not measure physiological responses and instead rely only on
self-reported data.

STUDY DESCRIPTION
The study was conducted on a closed test track in Waterloo,
Ontario, Canada, depicted in Figure 2, and involved the use of
an AV and a human controlled vehicle agent.

The AV, i.e., the ego vehicle, used in this study was the "Au-
tonomoose", a Lincoln MKZ hybrid research platform [11]
developed at the University of Waterloo to reach Level 3 au-
tonomy. The "Autonomoose", as seen in Figure 1, was fitted
with an array of sensors including Novatel inertial measure-
ment unit (IMU), Novatel Global Positioning System (GPS),
Velodyne Light-Detection-and-Ranging (LIDAR), and a range
of vision sensors. These sensors enable the AV to localize and
understand the environment around it. The motion planning
algorithm on board the vehicle uses the sensor information to
select a trajectory in accordance with the intended driving style
and the current environmental constraints [54]. Although the
study was entirely run with autonomy engaged, a safety driver
was present at all times to take over control in an emergency.

In addition to the ego, one other agent vehicle, a manually
driven Lexus 450 Rx, was present on the track. This additional
vehicle allowed us to investigate how passengers would react
to autonomous driving in the presence of other vehicles. Be-
sides this, no other pedestrian or vehicle was present in the
study design.

Driving styles
Driving style is comprised of a large number of driving pa-
rameters [5] such as acceleration thresholds, or lane-change
behaviors. In this study, we manipulated only a subset of the
driving style parameters: the longitudinal and lateral thresh-
olds of acceleration and distance. Longitudinal acceleration
and distance represented the maximum forward acceleration
and minimum distance from an object in front of the AV,

Table 1: We varied the thresholds for the lateral and longitudi-
nal components of two parameters: acceleration and distance.
Both components of each parameter were linked for a total
of four different driving styles: Low Acceleration Low Dis-
tance, Low Acceleration High Distance, High Acceleration
Low Distance, and High Acceleration High Distance.

Parameter Less Aggressive More Aggressive
Long. Lat. Long. Lat.

Acceleration 2.5 m/s2 2 m/s2 4 m/s2 4 m/s2

Distance 10 m 4.5 m 7.5 m 2 m



respectively. Likewise, lateral acceleration and distance repre-
sented the maximum acceleration perpendicular to the track
and minimum distance to objects beside the AV.

The parameter thresholds were evaluated in a pilot (N=12)
study based on interview feedback and physiological responses
and can be found in Table 1. These thresholds reached the max-
imum safety limit for the vehicle. Speed was also generally
constant at the maximum safety threshold of 9.72 m/s.

We linked acceleration and distance thresholds to keep the
experiment feasible. Manipulating four different thresholds
would have resulted in 16 different driving styles for each of
their combinations. To avoid having 16 trials for each partici-
pant, the longitudinal and lateral components of acceleration
(and distance) were either both set at their more aggressive
threshold, or both set at the less aggressive threshold. This
resulted in a combination of only four driving styles (Low
Acceleration Low Distance, Low Acceleration High Distance,
High Acceleration Low Distance, and High Acceleration High
Distance), each requiring its own trial.

The order of varying the thresholds in each trial was random-
ized for each participant in a within-subjects study design.

Although the thresholds were manipulated at the trial level, the
individual variables themselves continuously vary in a realistic
driving scenario. As a result, the analysis was performed not
on the thresholds but on samples from the entire signal ob-
tained for each of these variables. In addition, the derivatives
of both components of acceleration–longitudinal and lateral
jerk signals—were also considered in the analysis.

Manipulation checks
The interview feedback and physiological responses from the
pilot demonstrated that the manipulations were indeed per-
ceived by the participants. All participants were included in
the final study irrespective of whether the manipulation checks
were satisfied; this was done to increase the generalizability
of the analysis models to unexplained variance [48].

Teasing apart parameters with events
With realistic driving, it is difficult to completely separate the
effects of each driving style parameter. For example, there may
always be some very minor contribution of lateral acceleration
even when driving along a straight path because of slight,
unintended wavering in the lateral translation. This could
present confounds when analyzing entire trials.

To tease apart the influence of each individual parameter, four
different events were considered, each testing a different pa-
rameter:

1. Passing: involved passing a parked car oriented perpendic-
ular to the ego. This event tested lateral distance.

2. Intersection-stop: involved stopping at a clear intersection.
This event tested longitudinal acceleration.

3. Car-stop: involved stopping behind a lead agent vehicle.
This event was mainly used to test longitudinal distance,
although longitudinal deceleration also played a role in the
stop itself.

Figure 2: (a) Satellite image of the test track. (b-d) Order of
events for each trial [trial 1 – b, trial 2 – c, trial 3 – d] indicated
by the number beside the vehicle; the star represents the start
and end location of the ego vehicles. Colored segments of the
track represent the locations for the different events: green for
passing, orange for intersection-stop, blue for car-stop, and
purple for turning events. Trial 4 was a repetition of trial 1.

4. Turning: involved making a sharp turn at the end of the
track. This event tested lateral acceleration.

By analyzing events, we can more precisely isolate the differ-
ent driving style parameters, while introducing typical driving
scenarios as additional effect.

Varying the order of events
It was expected that the same order of events in each trial
would result in boredom and a strong order effect. To mitigate
this, the order of the passing and car-stop events were varied
for each trial (intersection-stop and turning events remained
constant because only one intersection and one sharp turn
were present in the test track, see Figure 2). Each participant
experienced the same sequence of event ordering—it was only
the threshold order that was randomized.

Participant task: watching a video
We needed an area of interest to measure eye movement en-
tropy. We thus tasked participants to watch a video played on a
5-inch display smartphone fixed to the dashboard (participants
sat in the passenger seat as seen in Figure 3). This task was
regarded as one of the most plausible activities for a passenger
in an autonomous vehicle while providing a trackable area of
interest (seen in the bottom panel of Figure 3). A neutral topic
– a documentary on the lost city of Atlantis – was chosen to
minimize any associated emotional responses.



Figure 3: (a) A participant fitted with the physiological sensors.
(b) Their view from the passenger seat, which includes the
video displayed on the phone screen to watch as their task.
The red bounding box indicates the AOI.

Participant data: questionnaires, self-reported scores,
and physiological responses
We collected a pre-study questionnaire, self-reported scores,
as well as physiological responses from participants.

Pre-study demographics questionnaire
Participants were asked to fill out a pre-study demographics
questionnaire which had questions for self-reported age and
gender, perceived driving style (very defensive, defensive,
aggressive, very aggressive), and perceived knowledge and
trust in autonomous vehicles (on Likert scales from 1–10).
This questionnaire can be found in the supplementary material.

Self-reported scores
After each event, we asked participants for on-the-fly self-
reported scores of comfort and anxiety. Each participant was
asked to rate separately their comfort and anxiety on an integer
scale from 1 to 10, 1 meaning “Not comfortable (anxious) at
all” and 10 meaning “Very comfortable (anxious)”.

After each trial, we asked participants to complete the so-
matic sub-scale of the Competitive State Anxiety Inventory -
2 (CSAI-2) questionnaire [33].

Physiological response
Three sources of physiological response were measured: GSR,
HR (and HRV), and eye movement patterns. A Shimmer3+
device was used to measure GSR and obtain a PPG signal for
HR and HRV, while a Tobii Glasses 2 Pro device was used to
track gaze patterns. The sensor set-up is shown in Figure 3.

Participant recruitment
We recruited 20 participants (10F, 10M) with ages between 19
and 64 years inclusive (M = 33.5, SD = 3.52) using posters
posted at the University of Waterloo. Participants had di-
verse educational backgrounds, occupations, and familiarity
with technology and self-driving vehicles. Participants each
received remuneration of $15 CAD, in addition to reimburse-
ment for transportation to and from the test track, if requested.

Procedure
Participants were first briefed about the experiment and given
an information letter. After signing the consent form, they
were fitted with GSR, PPG, and eye tracking sensors. In order
to minimize movement artifacts in the GSR signal, the sensor
device was fitted to the non-dominant hand of the participant
using Velcro straps. Velcro straps were also used to snugly
wrap the electrodes around the base of the middle and index
fingers. To further reduce signal noise, participants were in-
structed to position their hand on their leg and keep as still as
possible during the drive. In addition participants where asked
to avoid talking. All electrodes were sanitized with alcohol
wipes after each experimental run.

After the sensors were fitted, participants filled out the pre-
study questionnaire, and were directed to focus on the video
that was playing but to feel free to look up if they felt the need
to. The experiment began after eye-tracker calibration. After
completing all trials, participants were informally interviewed
for their feedback, and were asked to rank each event in order
of decreasing discomfort or anxiety.

SIGNAL PROCESSING
In this section, we describe the method of collection and pro-
cessing of vehicle state and physiological signals used in the
experimental analyses.

Ego vehicle driving data
Vehicle state signals were sampled at 20 Hz and can be seen
in the middle panel of Figure 4.

Acceleration
Acceleration values were measured using a car-mounted IMU
unit. To reduce signal noise, the raw acceleration data was
filtered using a second-order Butterworth filter. The acceler-
ation was then broken down into its lateral and longitudinal
components which were used in turning and stopping events
respectively.

Jerk
Jerk was calculated from the first-order derivatives of all accel-
eration components. To reduce the noise of these derivatives
over discrete values, a mean filter with a window size of 2
seconds was applied on the jerk values.



Distance
The vehicle used the AVOD [27] detection algorithm to detect
all surrounding dynamic objects, which in this case consisted
of the other agent vehicle. This algorithm relies on input
from multiple cameras along with the LIDAR data to produce
bounding boxes in KITTI format [20]. After initial detec-
tion, each dynamic object bounding box is tracked using a
Kalman filter [24]. While the algorithm is sufficiently robust
to accomplish autonomous driving, we found that, for our
analysis, further manual processing was sometimes required
to guarantee the most accurate positioning of the agent vehicle,
particularly when the detection algorithm failed to detect it.
This additional processing involved forcefully constructing a
bounding box in the region where the agent vehicle should
have been present, based on the recorded image and LIDAR
data.

We calculated the distance metric “bumper-to-bumper" based
on the Euclidean distance between the ego vehicle and dy-
namic object’s bounding boxes, using the closest pair of points
between the two boxes; this method of distance accurately
depicts how close two vehicles come to a collision at any point
in time. We resolved the distance into its lateral and longitudi-
nal components, which were used for the passing and car-stop
events, respectively.

Participant Physiological Response Signals
The raw physiological response signals can be seen in Fig-
ure 4. Each individual response signal was processed further
to extract the actual signals of interest.

GSR
The GSR variables used in the analysis included the SCL,
number of peaks, and the maximum peak amplitude. Peak-
related variables were applicable only to analyses involving
aggregation over an interval, discussed later in more detail.

To remove an observed upwards linear trend (and, hence, the
baseline), we detrended the raw GSR signal by first fitting an
ordinary least-squares regression line to it and then subtracting
this fitted line from the signal. The phasic component of the
SCL signal was then extracted via a moving median filter
with an 8 second window, and peaks were detected as the
maximum amplitude between onset (SCL> 0.01µS) and offset
(SCL< 0µS) pairs [22]. The median filtering also helped in
the removal of noise artifacts in the signal.

HR and HRV
Peaks were detected in the PPG signal by finding local max-
ima in a 10 second sliding window. The number of peaks
detected in each window were multiplied by six to obtain the
HR in beats per minute (BPM). To measure HRV, peaks were
detected over the entire trial and an interbeat interval (IBI)
series was constructed from the differences in timing between
each pair of consecutive peaks. The IBI series was then inter-
polated at regularly-spaced intervals and transformed to the
frequency domain using a Fourier Transform. The normalized
LF (0.04 – 0.15 Hz) and HF (0.15 – 0.4 Hz) components were
then extracted and the ratio RF between them was computed.
The HRV could only be extracted over the entire trial as a

Figure 4: A car-stop event with physiological (above) and ego
vehicle state (below) signals. As the ego vehicle approaches
the agent vehicle, P19’s physiological signals respond. Note
that there is an inherent delay, d, associated with physiological
signals.

smaller interval would not be adequate to capture the required
frequency resolution.

Eye movement patterns
There were two areas of interest (AOIs) for studying eye move-
ment patterns: the phone screen and the rest of the environ-
ment. Gaze patterns were converted to a sequence of fixations
using the iMotions software [39]. Following the approach
outlined by Allsop et al. [1], the fixation sequence between
the two AOIs was converted to a transition matrix used to
calculate the eye movement entropy over 10 second sliding
windows, using the following formula:

Entropy =
n

∑
i=1

p(i)
n

∑
j=1

p( j|i) log2 p( j|i), i , j

where n is the number of AOIs, p(i) is the zero-order prob-
ability of fixating on AOI i, and p( j|i) is the probability of
fixating on AOI j given a current dwell on AOI i.

Synchronization
The raw GSR, PPG, and gaze patterns were sampled at 512
Hz, 512 Hz, and 50 Hz respectively. The extracted SCL, HR,
and entropy signals were sampled collectively at 20 Hz using
linear interpolation and then synchronized with the vehicle
state signals (acceleration, jerk, and distance, all sampled at
20 Hz). Physiological and vehicle state signals were measured
using different clocks: video data on each system were used
to manually label common events in both groups of signals



Figure 5: Plots highlighting the significant differences in physiological responses for different events (P=pass, I=intersection-stop,
C=car-stop, T=turn). Stopping events (red) had a larger effect than non-stopping events (blue). All b values are reported at the top
of each plot along with their 95% CIs; *, **, and *** indicate p-values less than 0.05, 0.01, and 0.001, respectively.

and align them in time. Nearest-neighbour interpolation was
then used to synchronize and combine all signals.

ANALYSIS I: UNDERSTANDING THE ROLE OF EVENTS
Although the initial purpose of the events was to isolate the
different driving style parameters, participants expressed that
certain events affected them more than others. We thus inves-
tigated effects associated with event type, independent of the
driving style parameters studied.

We regressed each physiological response variable against
a categorical variable representing the event. We used lin-
ear mixed-effects models (LMEs) to perform the regression,
controlling for random effects in the within-subjects group-
ing factor (the participant IDs) and the trial number (used to
model learning effects across trials)2. To capture both average
and extreme effects, each response variable was aggregated
into maximum and mean values over the event intervals and
included the mean SCL, maximum peak amplitude, number of
peaks, maximum and mean HR, and maximum and mean en-
tropy. Planned contrasts grouped the four events into stopping
(car-stops and intersection-stops) and non-stopping (turns and
passing) events. We discuss the significant findings ( Fig-
ure 5):

We found that stopping events raised GSR, HR, and entropy.
Most participants also directly stated their discomfort or ap-
prehension with stopping (16 out of 20), particularly stopping
behind the lead vehicle (14 out of these 16), which had a sig-
nificantly higher effect on GSR compared to stopping at an
intersection.

ANALYSIS II: DRIVING STYLE PARAMETERS
We used LMEs to regress each response variable on vehicle
state variables, controlling for generally significant random
effects in the within-subjects grouping factor (the participant
IDs) and the trial number (used to model learning effects
across trials). Event, window, and time-series models also
used sequence number as a predictor along with a first order
autoregressive co-variance structure to model the sequential
nature of the data points.

2The source code and LME models used for all analyses can be found
in our online Github repository: https://github.com/nicolebd/
KeepCalm.

Levels of aggregation
To explore effects at different interval ranges, we conducted
regressions at four different levels of aggregation:

1. Trial level: aggregations were performed over the entire
trial. Additional variables included the normalized HRV
variables—LF, HF and RF.

2. Event level: aggregations were performed over each event.

3. Window level: aggregations were performed over non-
overlapping sliding windows, calculated based on position
to spatially align them across all participants. A window
width of 50 m and an average ego speed of about 10 m/s
resulted in approximately 5 s intervals, designed to incorpo-
rate the 1-5 s lag in GSR, the slowest response.

4. Time-series level: Here, response variables included the
SCL, HR, and eye movement entropy at each timestamp,
devoid of any aggregation.

As in Analysis I, aggregations were done using the mean and
maximum values for variables, where maximum-valued re-
sponses were regressed on maximum-valued predictors and
mean-valued responses were regressed on mean-valued pre-
dictors. Furthermore, while maximum-valued predictors took
into account directionality, mean values were calculated on
the basis of the absolute values.

Trial level and time-series results were inconclusive: trial-
sized intervals may have been too wide for the vehicle state
predictors, while the actual time-series samples might have
been insufficient to capture delays in physiological response.
By extension, we did not find any significant effects on the
HRV variables that were analyzed only at the trial level.

For brevity, we discuss only the results from the window level
analyses: event-level results, although not reported, were simi-
lar and serve as a confirmation of our finer-grained findings.
We also acknowledge the possibility of confounds between
driving style parameters and events but argue that it would be
impossible to study certain parameters in the absence of events
(e.g., lateral acceleration and longitudinal distance cannot
be studied without turning and car-stop events, respectively).
We did, however, analyze driving parameters separately over
each event and found similar significant or nearly significant
(p < 0.1) results.

https://github.com/nicolebd/KeepCalm
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Table 2: Regression coefficients and confidence intervals for all significant predictors at the window level. No significant effects
were found for the mean HR and mean entropy, so these responses were not included; *, **, and *** indicate p-values less than
0.05, 0.01, and 0.001 respectively.

Predictor
(max)

Max. Pk. Amp. Num. Pks. Max. HR Max. Entropy Predictor
(mean)

Mean SCL
(b±95%CI) (b±95%CI) (b±95%CI) (b±95%CI) (b±95%CI)

along–
along+

–0.025 ±0.037∗∗
0.087±0.042∗∗

–0.081±0.085∗∗∗
0.246±0.094∗∗∗

–1.949±2.964∗∗
3.596±2.645∗∗ – along –

jlong–
jlong+

–0.026±0.043∗∗
0.088±0.039∗∗

–0.068±0.095∗∗∗
0.27±0.09∗∗∗ – – jlong 0.143±0.115∗

preslead 0.12±0.072∗∗ 0.432±0.161∗∗∗ 6.546±4.223∗∗ 0.014±0.012∗ preslead 0.067±0.042∗∗
dlong – -0.014±0.013∗ – – dlong –

Predictors
Vehicle state predictor variables included the lateral and
longitudinal components of acceleration and jerk (along,alat
and jlong, jlat , respectively)—the mean and maximum were
considered—as well a the presence of a lead vehicle and
parked vehicle (preslead and prespass, respectively).

The minimum lateral and longitudinal distances dlat and
dlong were considered in separate analyses when prespass and
preslead were significant, respectively; these analyses were
run only on the set of samples that had the parked or lead
vehicle present.

Findings
Table 2 provides an overview of all vehicle state predictors

that were found to be significant at the window level.

GSR and HR were directly proportional to the magnitude
of longitudinal acceleration and jerk. Qualitative interview
feedback directly supports these observations: participants
explicitly referred to the “jerkiness" in braking and “jittery"
driving, with one participant likening the motion to “when my
kids were learning how to drive".

While the main effect of acceleration and jerk was largely
obvious and expected, the more interesting observation was its
directionality, as seen in the top panel of Figure 6: typically,
the positive direction had a greater effect. For example, the
maximum HR went up, on average, by about 3.6 BPM for
every m/s2 increase in positive acceleration, while it decreased
by nearly 2 BPM per every m/s2 increase in magnitude of
deceleration. This might be a consequence of relatively high
and jerky accelerations during the start of each trial, as well as
at the end of each stopping event.

Lead vehicle presence (and proximity) raised GSR, HR, and
entropy. This result suggests that passengers may be more
apprehensive about their safety when another actor—in this
case, the agent vehicle—is added to the picture. Indeed, 14
out of 20 participants considered the car-stop event to be the
most uncomfortable and anxiety-inducing: on average, even
the maximum HR went up by about 6.5 BPM when the lead
vehicle was present, while every 100 m increase in proximity
generated an additional 1.4 GSR peaks.

Figure 6: The main effect of acceleration on the GSR variable,
maximum peak amplitude (top), and the magnified effect when
a lead vehicle is present (bottom).

Lead vehicle presence (and proximity) magnified the effect
of longitudinal acceleration and jerk for GSR and HR. The
bottom panel of Figure 6 depicts how higher magnitudes of ac-
celeration have an even higher effect on the maximum peak am-
plitude in the presence of a lead vehicle. Specifically, the inter-
action between lead vehicle presence and longitudinal accelera-
tion was significant for the mean SCL (b = 0.207±0.154, p <
.01), maximum peak amplitude (b = 0.247±0.188, p < .05)
and number of peaks (b = 1.130±0.417, p < .001), while that
between presence and longitudinal jerk was significant for the
number of peaks (b = 0.504±0.309, p < .01) and maximum
HR (b = 9.115±8.029, p < .05). The effect did not exist for
entropy.

Weak (p < .1) or nearly significant (p ≈ .05) interaction ef-
fects between lead vehicle proximity and longitudinal acceler-



ation or jerk were found for the number of peaks, mean and
maximum HR, and mean entropy.

ANALYSIS III: SELF-REPORTED SCORES
Using the same approach as described in the previous analyses,
we regressed the CSAI-2 and on-the-fly scores—over entire
trial and event level intervals, respectively—on the number
of peaks, mean SCL, mean HR, and mean entropy in one
case, and the number of peaks, maximum peak amplitude,
maximum HR, and maximum entropy in another.

Findings
We report significant results of this analysis in Table 3.

GSR predicted comfort and anxiety. For every unit increase
in the number of peaks, we see that, on average, the predicted
comfort decreases by about a quarter of a point on the 10-
point Likert scale, while the CSAI-2 score increases by about
30%. The fact that these results were obtained at two levels of
analysis for distinct methods of self-reporting (the standard-
ized CSAI-2 questionnaire, versus the 10-point Likert scales)
indicates that the physiological responses studied are indeed
measures of comfort and anxiety, nicely tying together all of
our prior results.

DISCUSSION
The use of a physical AV, instead of simulated environments,
allows us to draw informed conclusions about the actual effect
of each driving style parameter. By extension, the study led to
the generation of a naturalistic dataset of passenger responses
and the corresponding driving style parameters, a contribution
that—along with the methods and findings of our study—can
benefit both researchers who do not have access to a physical
AV, as well as industrial practitioners investigating methods to
make such vehicles more accessible to the public. We present
three major findings:

1. The type of driving event determines the magnitude of
physiological responses. While the initial purpose of mod-
elling events was a methodological contribution towards
isolating and testing different driving style parameters, it
turned out that the type of event itself, independent of the
driving parameters, determined the magnitude of the physi-
ological response (GSR, HR, and entropy). Stopping events,
particularly car-stop events, had the largest impact on re-
sponse. This was corroborated by qualitative interview
feedback, which also indicated the relative comfort of the
turning and passing events.

2. The magnitude of physiological responses is affected by
external interacting agents. The positive relationship be-
tween longitudinal acceleration and jerk and physiological
responses was further positively magnified by the presence
and proximity of a lead vehicle. This tells us that the magni-
tude of physiological responses is context-dependent, influ-
enced not just by the type of event but the mere presence of
another interacting agent, and its distance to the ego vehicle.
Passengers may, therefore, not only have individual driv-
ing style preferences, but these preferences may manifest
differently depending on the scenario in question. More-
over, participants talked about the “jerkiness" in driving as

Table 3: Regression coefficients and confidence intervals for
significant physiological response predictors for self-reported
comfort and anxiety; *, **, and *** indicate p-values less than
0.05, 0.01, and 0.001 respectively.

Predictors
Comfort
(b ±
95%CI)

Anxiety
(b ±
95%CI)

CSAI-2
(b ±
95%CI)

Num. Pks.
–0.245***
±0.113

0.131*
±0.115

0.305***
±0.165

Mean SCL –0.934*
±0.837 – –

a source of discomfort, an occurrence that would not have
manifested in a low or medium fidelity simulator study,
confirming the usefulness of our in-vehicle experiment for
realistic results.

3. Physiological responses indicate passenger comfort and
anxiety. Third, we were able to relate passenger skin con-
ductance back to the self-reported comfort and anxiety
scores. While similar findings can readily be found in the
literature, its usefulness in this study lies in its confirmation
of the fact that we were indeed studying the correct problem:
the perceived comfort and anxiety experienced by passen-
gers in an autonomous vehicle. Furthermore, a similar study
on passenger trust did not find any significant correlations
between trust and skin conductance [34], indicating that
comfort and anxiety might be better self-report items to use
in future research.

Besides our major findings, we also found (from analysis II)
generally significant random effects for participant ID across
all response variables; the significance of these effects indi-
cates individual differences in baseline comfort levels in an
AV suggesting the need to adapt the driving style to passengers
at an individual level.

Applications in the real-world
To satisfy individual driving style preferences of passengers
in future autonomous vehicles, the driving style parameters
could be adapted at the individual level, either in an online
or offline fashion to create personalized driving styles. Our
findings tell us which of these parameters to consider.

Furthermore, the ability to relate physiological responses back
to self-reported comfort and anxiety scores advocates for their
use in an implicit passenger-vehicle interface. Given the
vehicle state as context, the onset of discomfort or anxiety
could be sensed from the physiological responses and implic-
itly used to make adjustments to the driving style parameters.
Even in the absence of such an implicit, adaptive system, a set
of preset driving styles informed by actual passenger feedback
and responses could still improve the safety-focused presets
that are currently employed.

Finally, the responses considered in this study have the ad-
vantage of being amenable to unobtrusive, real-world im-
plementations, as opposed to other more obtrusive and error-



prone methods such as electroencephalogram [32]. For exam-
ple, smartwatches and rings could be used to measure GSR and
HR, and a stationary eye-tracker could be set up to measure
eye movement patterns. Moreover, this has direct applications
outside the context of AVs: smartwatches could be used to
provide live feedback to Uber drivers (as we have all had Uber
drivers that have driven a little too fast).

Limitations in Study Design
There were several limitations associated with the study:

1. Confounds were present in the study. Despite our efforts to
isolate, as much as possible, separate parameters by means
of events, there is still some amount of confounding as
the nature of driving itself involves the combined effect of
multiple variables. Confounds could also exist between
driving style parameters and events but, as discussed in the
section on aggregation levels, this was unavoidable in order
to appropriately study each driving parameter.

2. External factors could have influenced the physiological
responses and self-report scores. Events such as manual
takeovers, and the presence of unexpected entities (e.g., a
wild turkey) on the test track occurred during some trials.
While the takeovers usually went unnoticed, two partici-
pants reported a spike in their anxiety after the takeover
occurred. Other participants were noticeably affected by
the presence of unexpected parked vehicles, while another
was surprisingly calmed by an unexpected beeping alert
(ironically a spurious crash warning). The weather also
ranged from warm and sunny, to cloudy—and even rainy—
throughout the study week. Such external factors, while
contributing even more towards a realistic dataset, are hard
to control for and were not taken into account during the
analysis.

3. There were some threats to external validity. Safety con-
cerns prevented us from running the study on a real road.
Also, while the research is aimed at passengers in higher
level vehicles, we were only able to run the study in a level
3 vehicle due to state-of-the-art limitations in automated
driving. The presence of a safety driver is likely to be an-
other major factor that downplayed passenger responses and
feedback.

4. Diversity in perceived driving style would have been pre-
ferred. The pre-study demographics survey indicated that
most participants preferred to employ a more defensive
style of driving. Furthermore, a few participants explicitly
expressed their boredom by the end of the third and fourth
trials indicating the need for shorter or more interesting
trials.

5. There were possible shortcomings in the video task. Al-
though we tried to keep the task as natural as possible with-
out causing any additional apprehension, the fact that there
were no follow up questions on the video made it difficult
to ensure that the participants actually watched it, possibly
affecting the magnitude of the entropy variables.

CONCLUSION
In this work, we studied passenger comfort and anxiety as
physiological responses to autonomous driving style. We ran
an experiment in a physical AV, contributing a method to
control and analyze different driving style parameters, and
releasing a naturalistic driving dataset as a by-product.

We measured GSR, HR, and eye movement patterns, and
collected self-reported comfort and anxiety scores from partic-
ipants. By analyzing our data at multiple levels of aggregation,
we found that parameters such as longitudinal acceleration
and jerk affect all physiological responses, more so in the
presence (and, to a lesser extent, proximity) of a lead vehicle.
We also found that the type of event, independent of the driv-
ing parameters, determined the magnitude of GSR, HR, and
entropy; stopping events—particularly stopping behind a lead
vehicle—had the most impact.

Finally, we were able to relate the physiological responses
back to the self-reported comfort and anxiety scores, indi-
cating that the responses could potentially be used to sense
(dis)comfort or anxiety in future passenger-vehicle interfaces.

Future work for this research should primarily lie in addressing
the outlined limitations, exploring a more diverse set of events,
and comparing passenger responses to automated driving with
those achieved during manual driving. Systems that warn
the passenger about upcoming stressful events while adapting
the driving style to their physiological response should be
investigated.
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