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Summary

� Phenology is a key aspect of plant success. Recent research has demonstrated that herbar-

ium specimens can provide important information on plant phenology. Massive digitization

efforts have the potential to greatly expand herbarium-based phenological research, but also

pose a serious challenge regarding efficient data collection.
� Here, we introduce CrowdCurio, a crowdsourcing tool for the collection of phenological data

from herbarium specimens. We test its utility by having workers collect phenological data (num-

ber of flower buds, open flowers and fruits) from specimens of two common New England (USA)

species: Chelidonium majus and Vaccinium angustifolium. We assess the reliability of using non-

expert workers (i.e. Amazon Mechanical Turk) against expert workers. We also use these data to

estimate the phenological sensitivity to temperature for both species across multiple phenophases.
� We found no difference in the data quality of nonexperts and experts. Nonexperts, how-

ever, were a more efficient way of collecting more data at lower cost. We also found that

phenological sensitivity varied across both species and phenophases.
� Our study demonstrates the utility of CrowdCurio as a crowdsourcing tool for the collection

of phenological data from herbarium specimens. Furthermore, our results highlight the insight

gained from collecting large amounts of phenological data to estimate multiple phenophases.

Introduction

Over the past century, climate change has had a significant impact
on plant phenology – the timing of life history events – across the
globe (Walther, 2004; Menzel et al., 2006; Parmesan, 2006; Cle-
land et al., 2007; Miller-Rushing et al., 2007; Chambers et al.,
2013). Importantly, the inability of species to respond phenologi-
cally to climate change has been found to have dire consequences
for species survival and community diversity (Inouye, 2008;
Møller et al., 2008; Willis et al., 2008; Caradonna et al., 2014).
However, the long-term and historical datasets necessary to iden-
tify the historical influence of climate change on phenology remain
relatively scarce, even for regions where the biota is well character-
ized and associated historical climate records are available. More-
over, most datasets of this nature show a strong geographical and
taxonomic bias: they are largely from temperate regions, mostly
include a small subset of species within these communities (e.g.
dominant woody species), and do not sample the variation in phe-
nological response across a species’ range (Wolkovich et al., 2014).

Herbaria, which house the best record of where plants live
today and have lived in the past, represent a largely untapped

resource for investigating phenological responses to climate
change despite their obvious relevance to this question
(Vellend et al., 2013). In particular, observations from numer-
ous specimens collected at multiple locations through time can
allow us to determine if a given species has altered its phenol-
ogy in relation to climate. This appears to be changing, how-
ever, as recent investigations have used herbarium specimens to
study the impacts of climate change (Primack et al., 2004;
Miller-Rushing et al., 2006; Robbirt et al., 2011; Panchen
et al., 2012; Zohner & Renner, 2014), and such efforts have
expanded dramatically to investigate phenology across large
numbers of species and vast geographical areas (Calinger et al.,
2013; Everill et al., 2014; Park & Schwartz, 2015). Moreover,
estimates of phenological response to climate change inferred
from herbarium records are similar to those observed with field
observations, validating their use for this purpose (Robbirt
et al., 2011; Davis et al., 2015; Spellman & Mulder, 2016).
And importantly, herbarium records can greatly expand our
knowledge of phenology across a broader sampling of taxon-
omy, geography and climate variability than is typically avail-
able from historic field observational studies (Davis et al.,
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2015). Thus, herbaria offer the potential to greatly expand our
understanding of phenology across space, time and taxa.

To date, studies that have utilized herbarium specimens to mea-
sure phenology represent only the tip of the iceberg in terms of the
phenological data available in herbaria around the world (C. G.
Willis, et al., in press). Most herbarium records remain inaccessible
to the larger scientific community. Accessing these data represents
a grand challenge faced by biodiversity scientists in the era of Big
Data (Arino et al., 2010; Tewksbury et al., 2014). Typically,
researchers have collected phenological data from individual
herbarium specimens by hand, assessing each physical specimen
manually. Such detailed and laborious work, often performed by
small teams, limits the amount of data that can be gleaned because
researchers often lack the time and resources to travel to multiple
herbaria and score potentially tens of thousands of specimens.

In order to increase the accessibility of herbaria collections,
there have been numerous calls for their digitization (i.e. captur-
ing specimen-level metadata images in digital form) and online
mobilization. In response, new methods and workflows in high-
throughput imaging and digitization are being innovated to
rapidly and efficiently create a virtual global herbarium that is
readily accessible to the world. Millions of digitized specimen
images already are available online (e.g. http://www.gbif.org;
http://portal.idigbio.org) and recent federally funded efforts have
mobilized herbaria from entire regions. Examples include efforts
from Australia (http://avh.chah.org.au), France (http://science.
mnhn.fr), South Africa (http://www.sanbi.org) and, most
recently, the New England region of the United States (broadly
defined as the states of Maine (ME), Vermont (VT), New
Hampshire (NH), Massachusetts (MA), Rhode Island (RI), Con-
necticut (CT) and New York (NY)). For New England alone,
over 500 000 virtual herbarium specimens are now accessible
through the Consortium of Northeastern Herbaria portal (http://
neherbaria.org/; for details, see http://nevp.org/resources).

As collections become increasingly decentralized and made
available online, the need to develop digital infrastructure includ-
ing tools to generate research outcomes will increase. Many tasks
related to mining digital specimens for relevant data (e.g. identi-
fying complex and variable floral structures) are currently too dif-
ficult to automate via machine learning, and thus require human
labor. To this end, one particularly promising approach to lever-
age these virtual collections for research is a ‘citizen science’
approach that enlists members of the public to process digital
specimens (Ellwood et al., 2015). One of the most successful
venues for crowdsourcing scientific research to date is Zooniverse
(https://www.zooniverse.org), which, at the time of writing this
paper (November 2016), hosts 46 crowdsourced projects ranging
from mapping the Milky Way (Lintott et al., 2008) to annotating
ancient fragments of Greek papyrus (Williams et al., 2014). With
regard to specimen data, a long-running Zooniverse project is
Notes from Nature (www.notesfromnature.org, Hill et al.,
2012), which aims to capture specimen data from hand-written
labels. Crowdsourcing has also been applied to record and track
present-day phenological observations (Nature’s Notebook,
https://www.usanpn.org/; Phenocam, Kosmala et al., 2016) and
species distributions (http://www.inaturalist.org/). However,

crowdsourcing has not been exploited to gather information from
herbarium specimens to assess the effects of climate change
research on plant phenology until recently.

New England and the recent digitization efforts of its regional
herbaria through the NEVP offer an ideal test case to develop
and test the tools necessary to collect phenological information
from specimen data rapidly and efficiently. New England is one
of the most intensively studied regions with regard to climate
change and has experienced warmer annual temperatures, earlier
springs, longer summers and shorter winters over the last 200 yr
(Horton et al., 2014). These seasonal changes have had profound
effects on the phenology of the New England flora. For instance,
leaf-out dates for deciduous forests in the region have advanced
by up to 10 d (Richardson et al., 2006). Similarly, spring flower-
ing times have advanced, on average, by 2 wk (Miller-Rushing &
Primack, 2008; Willis et al., 2010; Ellwood et al., 2013).

Our study has three main goals. First, we introduce a new
crowdsourcing image annotation tool developed on the online
CrowdCurio platform (https://www.crowdcurio.com/; Fig. 1) to
collect phenological data from herbarium specimens. More gener-
ally, CrowdCurio allows researchers to create and manage crowd-
sourcing projects that are tailored to their specific questions (Law
et al., 2013). We developed a CrowdCurio project, titled ‘Thoreau’s
Field Notes’, to crowdsource the scoring of three phenological
traits (number of flower buds, flowers and fruits) using digitized
herbarium specimens of two common New England species:
Greater celandine (Chelidonium majus L.) and Lowbush blueberry
(Vaccinium angustifolium Aiton). Second, we assess the reliability
of expert vs nonexpert data using this tool, and describe our meth-
ods of quality control to identify outlier data, which is essential to
the robustness and downstream data utility of any crowdsourcing
effort. Third, in an attempt to capture a more comprehensive pic-
ture of reproductive life history, we crowdsource specimens from
our two focal species (C.majus and V. angustifolium) for three
reproductively relevant phenological traits: flower buds, open flow-
ers and fruits. We then use these data to analyze the phenological
sensitivity of multiple phenophases to interannual temperature
variation (i.e. first flowering day, peak flowering day, first fruiting
day and peak fruiting day). Finally, we demonstrate the promise of
both crowdsourcing and the CrowdCurio platform as tools for
assessing phenophases across an entire season rather than for one
event within that season (e.g. first flowering date).

Materials and Methods

Crowdsourcing phenological data collection

The phenological state, or phenophase, of a herbarium specimen
is based on the presence and quantity of relevant phenological
traits (e.g. leaf buds, flowers, fruits). Typically, researchers have
focused on the presence or absence of a single trait or structure
(e.g. flowers) for investigating a single phenophase (e.g. first
flower day). To estimate multiple phenophases, we quantified
data for three reproductively relevant phenological traits: flower
buds, open flowers and fruits. For each digital specimen image,
workers were asked to count the number of each of these traits.
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We employed ‘experts’ and ‘nonexperts’ to crowdsource the col-
lection of phenological data. Our ‘expert’ pool consisted of four
Harvard University Herbaria curatorial staff each with familiarity
with herbarium specimens and botanical terminology (co-authors
R.B., L.B., C.H., C.S. and E.W. participated as experts, although
one was removed due to a technical error). Each worker in the
expert pool was asked to score all three phenological traits for a
subset of the 820 images. The median number of images scored
per expert worker was 635 (range: 624–666). The median number
of expert workers that scored each image was 3 (range: 1–6).

The ‘nonexpert’ pool comprised 270 anonymous workers hired
through Amazon’s Mechanical Turk service (MTurk; https://
www.mturk.com/). Nonexpert workers were asked to score all
three phenological structures for a set of 10 individual images.
Each set contained a single, randomly selected duplicate image (i.e.
nine unique images) to assess the quality of workers in terms of
their consistency in producing the same output twice, a metric we
refer to as repeatability error (A. C. Williams et al., unpublished).
Nonexpert workers were compensated for their participation at
the rate of $0.10 per image plus a $0.15 base participation rate for
each set of images. The median number of images scored per non-
expert worker was 19 (range: 1–23). The median number of non-
expert workers who scored each image was 5 (range: 5–7). The use
and collection of data by nonexperts was reviewed and approved
by an ethics review committee at the University of Waterloo.

Before beginning their data collection, expert and nonexpert
workers were required to watch a short (c. 1 min) instructional
video on how to collect data on CrowdCurio. Both sets of workers
also were provided example images for each phenological trait for
each species. For both experts and nonexperts, we also recorded
the time duration required to score each image.

Specimen data

Chelidonium majus and Vaccinium angustifolium were selected to
represent species with contrasting life histories. Chelidonium
majus is a biennial herb that is invasive in New England, whereas
V. angustifolium is a perennial shrub that is native to New Eng-
land. Both species flower at similar times during spring, and fruit
through summer and fall.

We assembled a dataset of 820 digital herbarium specimen
images (139 for C. majus (1848–2012) and 681 for V. angustifolium
(1823–2002); Supporting Information Table S1) from across New
England (Fig. 2). Images were compiled from the digital specimen
collections of the following herbaria: Harvard University Herbaria
(A, AMES, ECON, GH and NEBC), the University of New
Hampshire Hodgdon Herbarium (NHA), the University of Con-
necticut George Safford Torrey Herbarium (CONN) and the Yale
University Herbarium (YU). These images are available via the
Consortium of Northeastern Herbaria web portal (http://portal.
neherbaria.org/).

Of the 820 specimens in our dataset, only 149 included
geospatial data (latitude, longitude). For the remainder of the
specimens, we obtained geospatial data based on the location of
the nearest municipality implemented with the ‘GEOCODE’ func-
tion in the GGMAP library (Kahle & Wickham, 2013) using R
v.3.2.2 (R Core Team, 2015). We obtained geospatial data for
an additional 669 specimens (818 in total; Fig. 2).

Comparison of expert and nonexpert workers

We evaluated the quality of nonexpert crowdsourced vs expert
count data using three separate analyses.

Fig. 1 Annotation interface of CrowdCurio for collecting phenological data from digitized herbarium specimens. Phenological data include counts of flower
buds, open flowers and fruits. Crowdsource workers score each data type by clicking on the presence of corresponding objects on the image (orange
circles). Workers click the image to add and remove points. Workers also are provided with examples of each data type on the left. Object landmarks for
each data type are color-coded. Workers can traverse the image either by clicking and dragging the image itself or with the subset image in the upper right
corner. The specimen pictured is of Vaccinium angustifolium (lowbush blueberry).
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First, we tested for differences in data collector sampling error
between expert and nonexpert workers. Collector sampling error
was calculated as the t-distribution 95% confidence interval for
each pair of duplicate images scored by a worker. We used a lin-
ear-mixed model to test for differences between experts and non-
experts, where sampling error was the dependent variable;
species, worker type and their interaction were fixed effects, and
worker ID was a random effect nested in worker type. Models
were implemented in R using the ‘LMER’ function in the LME4
library (Bates et al., 2015). Individual models were fitted for each
phenological trait.

Second, as a measure of nonexpert accuracy, we compared
nonexpert consensus estimates to expert consensus estimates.
Consensus estimates of each phenological trait per specimen were
calculated as the median count of all workers within a worker
type. In a previous study, we found the median consensus to be
more reliable than majority vote consensus, as it was less subject
to bias toward zero counts (A. C. Williams et al., unpublished).
We compared median consensus estimates among worker types
using an analysis of covariance that accounted for the effects of
species, trait and the interactions between all independent vari-
ables.

Third, we compared consensus error estimates, calculated as
the difference between the individual worker count and the
specimen consensus, between expert and nonexperts using a

linear-mixed model. Individual consensus error was treated as
the dependent variable, whereas species, worker type and their
interaction were fixed effects, and worker ID was a random
effect nested in worker type.

Estimation of phenophases

We focused on four important phenophases: first flowering date
(FDflr), peak flowering date (PDflr), first fruiting date (FDfrt) and
peak fruiting date (PDfrt). Specimens were scored for each
phenophase based on the relative proportion of flower buds, open
flowers and fruits, calculated from combined expert and nonex-
pert consensus counts. First flowering date was scored as < 50%
flowers, at least one flower bud or flower, and 0% fruits (N speci-
mens: Chelidonium = 16, Vaccinium = 59). Peak flowering date
was scored as ≥ 50% flowers of total count (N specimens:
Chelidonium = 3, Vaccinium = 206). First fruiting date was scored
as < 50% fruits, with at least one fruit present (N specimens:
Chelidonium = 37, Vaccinium = 31). Peak fruiting date was
scored as ≥ 50% fruits (N specimens: Chelidonium = 73,
Vaccinium = 332). Eight of the specimens (all Vaccinium) met
our criteria for both peak flowering and first fruiting, as defined
above. Where analyses included direct comparisons of
phenophases (e.g. did phenological sensitivity differ across
phenophases?), we ran two separate models with all eight speci-
mens coded in one or the other phenophase. For analyses that
examined phenophases separately (e.g. individual estimates of
phenological sensitivity), we included all eight specimens in both
analyses of peak flowering and first fruiting. To avoid potentially
spurious collection dates, we also removed specimens that had
collection dates after 31 October (N = 2), as the lateness in the
season made the collection date suspect. Mean dates for all four
phenophases for both species are available in Fig. S1.

Historical climate data

Historical temperature data from New England were obtained
from the Applied Climate Information System (ACIS; http://
www.rccacis.org/). We used a scipy spatial cKDTree algorithm
implemented in PYTHON to match each specimen, based on its
geospatial location, to the closest weather station within a 25-km
radius (https://github.com/Bouteloua/climate_data_fetcher). If
weather data were available for the year in which the specimen
was collected, mean monthly temperatures for all 12 months were
returned. Of the 820 specimens in our dataset, we obtained tem-
perature data for 414 specimens (93 of C. majus, 321 of
V. angustifolium).

Analysis of phenological sensitivity

In order to estimate phenological sensitivity (day of year °C�1),
we used a multivariate linear regression model that included the
phenophase timing (i.e. specimen collection date (day of year)) as
the dependent variable plus spring temperature, latitude, longi-
tude and collection year. This model was run independently for
each species. We defined spring temperature as the mean

Fig. 2 Distribution map of herbarium specimens for two common New
England species investigated in this study: Chelidonium majus (celandine)
and Vaccinium angustifolium (lowbush blueberry).
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monthly temperature averaged across March, April and May. We
used the same temperature metric for both species and across all
phenophases to standardize comparisons.

In addition to testing for phenological sensitivity with a full
standardized model, we also determined the best-fit combination
of predictor variables for each phenophase using stepwise AIC
model comparison with the ‘STEPAIC’ function in the R library
MASS (Venables & Ripley, 2002).

Results

Comparison of expert vs nonexpert workers

Experts were significantly more efficient at counting phenological
traits on a per specimen basis, processing specimens, on average,
c. 0.80 min faster than nonexperts (mean processing time per
specimen in minutes � SE: experts = 1.40� 0.08; nonex-
perts = 2.20� 0.06; t-test: t = 8.07, df = 4952.6, P < 0.001). Col-
lectively, 270 nonexperts processed 4197 specimen images
(including duplicates) over the course of c. 7 d, with each individ-
ual participant working, on average, 0.6 h (153.6 total hours). By
contrast, experts processed 2560 specimen images over c. 4 d,
with each participant working, on average, 14.9 h (59.6 total
hours for four experts). In terms of overall cost, nonexpert data
collection was significantly less expensive than expert data
collection. MTurk costs totaled US$692.40 (4197 images9
$0.10 + 270 workers9 $0.15 baseline fee + 270 assignments9
$0.86 MTurk assignment fee), whereas expert costs total US
$2048.45 (59.6 work hours9 $34.37 prorated hourly rate). The
per image cost was $0.16 for nonexperts and $0.80 for experts.

Although nonexperts tended to have larger sampling error rates
in comparison to experts, these differences were not statistically

significant (lsmean and contrast of sampling error by worker type:
experts = 8.1� 7.6, nonexperts = 11.4� 1.5, t =�0.43, df = 100.3,
P = 0.669; Table S1). Species identity had a significant effect on
sampling error, however, with larger error rates associated with
Vaccinium (lsmean sampling error� SE across all phenological
traits: Vaccinium = 13.1� 3.8, Chelidonium = 6.4� 4.1, t =
�3.95, df = 1600.5, P < 0.001; Table S1). There was a signifi-
cant interaction between worker type and phenological trait
(Table S1), but it was not driven by trait-specific differences
between experts and nonexperts (Tables S2, S3). Rather, the sig-
nificant interaction between worker type and phenological trait
was the result of differences in sampling error rates among traits
within worker type (Table S3). Furthermore, expert and nonex-
pert consensus estimates were highly correlated, indicating their
similarity (Pearson’s correlation coefficient – flower buds:
r = 0.89, P < 0.001; flowers: r = 0.94, P < 0.001; fruits: r = 0.95,
P < 0.001; Fig. 3).

Consensus error did not differ significantly between experts and
nonexpert workers (Table S4). Furthermore, differences in consen-
sus error among experts vs nonexperts did not depend on species
or trait, as indicated by the lack of significant interaction between
type9 species and type9 trait (Table S4). Consensus error, rather,
was influenced by attributes of the species and phenological traits,
and significant effects of both variables were detected (Table S4).
Overall, consensus error was larger in Vaccinium in general, but
especially in Vaccinium fruit counts (Table S5).

Phenophases and climate sensitivity

Phenological sensitivity to spring temperature differed signifi-
cantly across phenophases, as indicated by a significant interac-
tion term between phenophase and spring temperature in our

Fig. 3 Comparison of expert and nonexpert
consensus counts for each phenological trait.
Consensus was calculated as the median
count of all worker estimates within worker
type (expert vs nonexpert). Pearson
correlation coefficients (r) indicate the degree
of similarity between expert and nonexpert
consensus estimates for each species (Va,
Vaccinium angustifolium; Cm, Chelidonium
majus).
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ANCOVA model (Table S6). Independent analyses of each
phenophase found that PDflr and PDfrt significantly advanced
under warmer spring temperatures (�1.93 d °C�1 and �3.34 d
°C�1, respectively; Table S7; Fig. 4). Phenological sensitivity of
PDfrt did not differ significantly among species, however
(Table S7). We were unable to test for differences between
species regarding the phenological sensitivity of PDflr because of
insufficient data for Chelidonium.

Stepwise AIC analysis of the best-fit linear model found dis-
tinctly different sets of predictor variables for each phenophase
and genus, which in certain instances excluded spring temperature
entirely (Table S9). The best-fit model did not find spring temper-
ature to be significant predictor for FDflr for either species
(Table S9). Rather, the best predictor of FDflr in Vaccinium was
longitude (more easterly specimens flower earlier), whereas for
Chelidonium it was year (more recent specimens flower earlier)

(Table S10). The best-fit model for PDflr, limited to Vaccinium,
did include spring temperature, as well as the interaction between
spring temperature and latitude, such that both of these terms
were marginally significant (Table S10). The best-fit model for
FDfrt in Vaccinium included spring temperature (Table S10), of
which only latitude, longitude and their interaction had signifi-
cant effects, such that FDfrt tended to advance moving north and
east (Table S10). In Chelidonium, the best-fit model for FDfrt

included only year, which did not have a significant effect
(Table S10). The best-fit model for PDfrt in Vaccinium included
spring temperature, latitude, longitude and latitude9 longitude
(Table S10), of which only spring temperature had a significant
effect, such that PDfrt advanced with warmer spring temperatures
(Table S10). Finally, the best-fit model for PDfrt in Chelidonium
included year and longitude, neither of which had a significant
effect (Table S10).

Fig. 4 Phenological sensitivity to spring temperature (d °C�1) for four phenophases of two common New England species. Phenological sensitivity of
Vaccinium angustifolium is on the upper row, Chelidonium majus is on the lower row. Spring temperature is defined as mean monthly temperature of
March, April and May for a given year. Bold lines represent regression slope estimates from the ‘full’ linear model (see Supporting Information Table S8).
Dashed lines indicate the 95% confidence interval of slope estimates.
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Discussion

We draw several important conclusions from our study. First,
our study demonstrates the reliability of nonexpert crowd-
sourcing to collect large amounts of accurate phenological data
from herbarium records. Second, our study highlights the general
advantages of the CrowdCurio platform, not only for herbarium
research, but academic research in general. Third, our study
builds on previous herbarium-based phenological research by
scoring multiple phenological traits per specimen, which allowed
us to test phenological sensitivity to spring temperature across
multiple phenophases. These results demonstrate that herbarium
specimens can provide a more nuanced and comprehensive pic-
ture of the phenological sensitivity of species than previously
thought.

Reliability of crowdsourced herbarium-based phenological
data

Crowdsourcing has become an increasingly important tool in sci-
entific data collection (Ellwood et al., 2015). Here, we demon-
strate crowdsourcing to be an effective and reliable tool for the
collection of herbarium-based phenological data. Nonexpert
worker consensus estimates were similar to those of trained
experts. This is perhaps not surprising given that object-oriented
tasks (e.g. counting, identifying image landmarks) typically have
a low learning barrier. For example, Chang & Alfaro (2015)
found nonexpert placement of geomorphological landmarks for
digital images of fish to be equivalent to expert placement. Fur-
thermore, nonexpert assessments have the potential to be
improved through post-collection filtering. The tendency for
nonexpert sampling and consensus error rates to be higher is
likely due to presence of spammers among the nonexpert worker
pool (e.g. workers who enter random numbers simply to com-
plete the task). Although these higher error rates did not affect
nonexpert consensus estimates, they do suggest potential for data
improvement. Indeed, current efforts are underway to develop
metrics to identify spammers and filter them from crowdsourcing
datasets within the CrowdCurio platform (A. C. Williams et al.,
unpublished).

Recently, there has been a marked increase in efforts to unlock
the information housed in herbarium records. In particular, there
has been an effort to scale-up the geographical and taxonomic
coverage of herbarium-based phenological data, which requires
the processing of thousands of specimens (Calinger et al., 2013;
Everill et al., 2014; Park & Schwartz, 2015). In terms of size, our
own study is rather small (Park & Schwartz, 2015). However, we
were able to process all 820 specimens in the span of less than
1 wk with a small time commitment among each nonexpert
participant (0.6 h) at a significantly reduced cost per image. This
contrasts with the expert effort, which required each of the four
full-time staff members to score specimens during their working
week. The final cost for nonexpert data was a fifth of the cost of
expert-collected data ($0.16 per image for nonexperts vs $0.80
per image for experts). Thus, crowdsourcing has the benefit of
being able to cost-effectively score a specimen independently by

multiple workers. Such cost-effectiveness is not without caveats,
however. Serious questions remain about the ethical use of paid
crowdsourcing in an unregulated labor market (Fort et al., 2011).
Scientists should consider these issues when contemplating the
use of these tools. At $0.10 per image, a standard per task rate for
MTurk, our nonworkers earned a salary of c. $3.14 h�1 (includ-
ing baseline fees), which is below the US Federal minimum wage
($7.25 h�1). Unfortunately, whether participants in our study
were participating as a hobby, out of casual interest or as a means
for generating income was not clear. Our ideal scenario would be
to have these tasks performed voluntarily by curious and enthusi-
astic citizen scientists, a means of data collection that is rapidly
expanding in the life sciences (Ellwood et al., 2015), and one that
we are actively pursuing with CrowdCurio.

Sampling or observation error, possibly due to fatigue or lapses
in attention, is a common attribute among most ecological
datasets based on count data, even when collected by trained
experts. There is also an innate ambiguity in scoring phenological
traits from herbarium specimens, wherein the specimen preserva-
tion may have obscured distinct trait attributes (e.g. overlapping
structures). Estimates from multiple workers provide a means to
account for such error and pinpoint areas of ambiguity.

CrowdCurio as a generalizable tool for crowdsourced
research

Our results collectively highlight several advantages that
CrowdCurio offers over existing crowdsourcing platforms. First,
CrowdCurio follows a research-oriented crowdsourcing model
that allows both academic researchers (e.g. ecologists) and
human–computer interaction researchers to test hypotheses
simultaneously. The advantage of this parallel model is the ability
to improve both collection efficiency and data quality. For
instance, in conjunction with the study presented here, we also
used these data to validate a method of data quality control that
assesses workers’ reliability based on how consistently they count
duplicate images (D�ej�a vu; A. C. Williams et al., unpublished).
Tools such as D�ej�a vu can then be integrated into data collection
workflows to improve future data collection efforts and down-
stream analytics. More generally, the findings reported in both
our study and A. C. Williams et al. (unpublished) are relevant
not only in the context of plant ecology, but also to the growing
body of crowdsourcing and citizen science literature. In a broader
sense, CrowdCurio’s model of scientific crowdsourcing creates a
synergistic relationship between scientists, human–computer
interaction researchers and members of the public, by allowing
each constituent to better understand the critical role that one
another plays in the others’ work.

Second, one of the chief limitations of crowdsourcing the col-
lection of herbarium specimen data – or for ‘citizen science’
research in general – is the technical barrier to entry. Researchers
who have utilized crowdsourcing projects to date have either
relied on collaborators who specialize in crowdsourcing program-
ming (e.g. Zooniverse) or have developed the software a la carte
(e.g. Chang & Alfaro, 2015). As a user-centered platform,
CrowdCurio offers an alternative, exciting potential to greatly

� 2017 The Authors

New Phytologist� 2017 New Phytologist Trust
New Phytologist (2017)

www.newphytologist.com

New
Phytologist Research 7



expand citizen science-based research. CrowdCurio has been
designed to allow researchers to set the full range of parameters
for controlling and managing their own crowdsourcing project
using a user-friendly interface and minimal technical assistance.
This includes projects unrelated to phenology or simple object
counts, such as estimating changes in quantitative trait measure-
ments such as leaf shape (Buswell et al., 2011). Such flexibility
makes CrowdCurio a promising tool for integration into existing
biodiversity database structures.

Expanding the purview of herbarium-based phenological
research

Specific to the collection of herbarium-based data, the
CrowdCurio image annotator stands apart from existing plat-
forms in its ability to collect fine-scale phenological data. Existing
approaches – either that utilize crowdsourcing (https://www.orc
hidobservers.org/) or that are used in-house as part of standard
database entry (e.g. Symbiota; Gries et al., 2014) – allow workers
to classify specimens based on a list of predefined phenophases
(e.g. flowering vs not flowering). This classification approach has
advantages such as the ability to score a large number of speci-
mens with relatively minimal effort. By contrast, our annotator is
designed to follow a quantitative approach that offers a fine-
grained assessment of specimen phenological traits. As we illus-
trate here, these fine-grained approaches (providing counts and
locations of phenological traits) can provide a more nuanced
characterization of phenophases, as well as characterization of
multiple phenophases at once. Furthermore, these fine-scaled
count and location data can be converted easily into pre-defined
phenological classification schemes to match existing herbarium
database structures.

In general, our results confirm the patterns observed across
multiple herbarium-based studies of phenological sensitivity (C.
G. Willis et al., in press). First, we found both species to be phe-
nologically sensitive to spring temperature, with peak flowering
and fruiting advancing in warmer years. The magnitude of this
sensitivity (c. 2–3 d °C�1) also is consistent with previous studies
that have estimated phenological sensitivity of other plant species
in New England (Primack et al., 2009; Ellwood et al., 2013;
Davis et al., 2015). In addition, our study highlights the promise
of a more detailed and integrated approach of scoring multiple
phenological traits relevant to each species reproductive life his-
tory. Most studies, by contrast, investigate only one aspect of life
history (e.g. leaf-out, flowering or fruiting; C. G. Willis, et al.,
in press). By recording flower bud, flower and fruit numbers, we
were able to quantify multiple distinct phenophases across a
season (e.g. first flowering date vs peak flowering date). This
approach revealed significant differences between the phenological
sensitivity of different phenophases. Although C. majus was not
sensitive to spring temperatures, V. angustifolium was, but only
for peak flowering and fruiting date, which advanced significantly
in warmer years. Our results are in keeping with observational
studies that have observed similar variation in sensitivity to
seasonal events across phenophases (Caradonna et al., 2014).

In summary, our study demonstrates the significant potential
of crowdsourcing platforms driven by members of the public for
collecting large amounts of phenological data from herbarium
specimens. The speed, efficiency and cost-effectiveness with
which we collected data on two New England species using
CrowdCurio suggests that crowdsourcing could be a key to
unlocking the vast troves of data stored in the World’s herbaria.
Furthermore, our study also highlights the power of these historic
records. Although herbarium specimens have obvious limitations
(Davis et al., 2015; C. G. Willis et al., in press), they are still the
most comprehensive historical record of plant phenology and
biodiversity available. When aggregated across a geographical
region, these data have the power to illuminate plant phenologi-
cal behavior, such as sensitivity to temperature. Although the
species that we used in this study were relatively well sampled
across New England, future studies must also consider the poten-
tial biases inherent in the collection of herbarium specimens and
how they might ultimately influence phenological patterns
(Meyer et al., 2016; B. H. Daru et al., unpublished).
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